222 research outputs found

    Given breast cancer, is fat better than thin? Impact of the estrogen receptor beta gene polymorphisms.

    Get PDF
    The role of estrogen receptor beta (ERβ) in breast cancer has been investigated since its identification in 1996. Studies based on protein expression have indicated that ERβ is a favorable prognostic marker. Further, ERβ expression is lower in obese breast cancer patients. Fewer studies have focused on the prognostic impact of ERβ polymorphisms. Therefore, we analyzed the associations between four previously identified haplotype tagging single nucleotide polymorphisms (htSNPs), associated haplo- and diplotypes, and breast cancer-free survival according to body constitution. The patient cohort included 634 women from the prospective breast cancer and blood study (BC Blood study, Sweden) with a median follow-up of 4.92 years. Four htSNPs (i.e., rs4986938, rs1256049, rs1256031, rs3020450) in the ESR2 gene and the correlating haplo- and diplotypes were analyzed and correlated to selected patient and tumor characteristics and to disease-free survival, including stratification for BMI. Based on the four htSNPs, seven haplotypes and eight diplotypes were identified. The patient and tumor characteristics were well-balanced across all geno- and haplotypes. Disease-free survival differed according to rs4986938 and rs1256031 (Log-Rank P = 0.045 and P = 0.041, respectively) and the number of haplotype copies of the wildtype CCGC and TCAC (Log-Rank P = 0.027 and P = 0.038, respectively). In the survival analyses stratified for BMI, significant survival differences between alleles were observed among overweight women (rs4986938 and rs1256031 with Log-Rank P = 0.001 and P = 0.001, respectively). The BMI-stratified survival analyses based on haplotypes showed shorter disease-free survival for overweight women with null copies of CCGC (Log-Rank P = 0.001) and for overweight women with any TCAC copy (Log-Rank P < 0.0001). Markedly impaired disease-free survival was found for genotypes in two out of four ESR2 htSNPs and for two haplotypes. ESR2 polymorphisms seem to divide patients into good and poor survivors based on BMI, stressing the need of taking host factors into consideration in the evaluation of prognostic markers

    Do mammographic tumor features in breast cancer relate to breast density and invasiveness, tumor size, and axillary lymph node involvement?

    Get PDF
    Breast density and mammographic tumor features of breast cancer may carry prognostic information. The potential benefit of using the combined information obtained from breast density, mammographic tumor features, and pathological tumor characteristics has not been extensively studied

    FGF/FGFR1 system in paired breast tumor-adjacent and tumor tissues, associations with mammographic breast density and tumor characteristics

    Get PDF
    IntroductionMammographic breast density (MBD) is an established breast cancer risk factor, yet the underlying molecular mechanisms remain to be deciphered. Fibroblast growth factor receptor 1 (FGFR1) amplification is associated with breast cancer development and aberrant FGF signaling found in the biological processes related to both high mammographic density and breast cancer microenvironment. The aim of this study was to investigate the FGF/FGFR1 expression in-between paired tumor-adjacent and tumor tissues from the same patient, and its associations with MBD and tumor characteristics.MethodsFGFR1 expression in paired tissues from 426 breast cancer patients participating in the Karolinska Mammography Project for Risk Prediction of Breast Cancer (KARMA) cohort study was analyzed by immunohistochemistry. FGF ligand expression was obtained from RNA-sequencing data for 327 of the included patients.ResultsFGFR1 levels were differently expressed in tumor-adjacent and tumor tissues, with increased FGFR1 levels detected in 58% of the tumors. High FGFR1 expression in tumor tissues was associated with less favorable tumor characteristics; high histological grade (OR=1.86, 95% CI 1.00–3.44), high Ki67 proliferative index (OR=2.18, 95% CI 1.18–4.02) as well as tumors of Luminal B-like subtype (OR=2.56, 95%CI 1.29–5.06). While no clear association between FGFR1 expression and MBD was found, FGF ligand (FGF1, FGF11, FGF18) expression was positively correlated with MBD.DiscussionTaken together, these findings support a role of the FGF/FGFR1 system in early breast cancer which warrants further investigation in the MBD–breast cancer context

    Influence of anthropometric factors on tumour biological characteristics of colorectal cancer in men and women : a cohort study

    Get PDF
    BACKGROUND: Obesity is a well established risk factor of colorectal cancer (CRC), but how body size influences risk of colorectal cancer defined by key molecular alterations remains unclear. In this study, we investigated the relationship between height, weight, body mass index (BMI), waist- and hip circumference, waist-hip ratio (WHR) and risk of CRC according to expression of beta-catenin, cyclin D1, p53 and microsatellite instability status of the tumours in men and women, respectively.METHODS: Immunohistochemical expression of beta-catenin, cyclin D1, p53 and MSI-screening status was assessed in tissue microarrays with tumours from 584 cases of incident CRC in the Malmö Diet and Cancer Study. Six anthropometric factors: height, weight, BMI, waist- and hip circumference, and WHR were categorized by quartiles of baseline measurements and relative risks of CRC according to expression of beta-catenin, cyclin D1, p53 and MSI status were calculated using multivariate Cox regression models.RESULTS: High height was associated with risk of cyclin D1 positive, and p53 negative CRC in women but not with any investigative molecular subsets of CRC in men. High weight was associated with beta-catenin positive, cyclin D1 positive, p53 negative and microsatellite stable (MSS) tumours in women, and with beta-catenin negative and p53 positive tumours in men. Increased hip circumference was associated with beta-catenin positive, p53 negative and MSS tumours in women and with beta-catenin negative, cyclin D1 positive, p53 positive and MSS tumours in men. In women, waist circumference and WHR were not associated with any molecular subsets of CRC. In men, both high WHR and high waist circumference were associated with beta-catenin positive, cyclin D1 positive and p53 positive tumours. WHR was also associated with p53 negative CRC, and waist circumference with MSS tumours. High BMI was associated with increased risk of beta-catenin positive and MSS CRC in women, and with beta-catenin positive, cyclin D1 positive and p53 positive tumours in men.CONCLUSIONS: Findings from this large prospective cohort study indicate sex-related differences in the relationship between obesity and CRC risk according to key molecular characteristics, and provide further support of an influence of lifestyle factors on different molecular pathways of colorectal carcinogenesis

    Tumor-specific expression of HMG-CoA reductase in a population-based cohort of breast cancer patients

    Get PDF
    The mevalonate pathway synthetizes cholesterol, steroid hormones, and non-steriod isoprenoids necessary for cell survival. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) is the rate-limiting enzyme of the mevalonate pathway and the target for statin treatment. HMGCR expression in breast tumors has recently been proposed to hold prognostic and treatment-predictive information. This study aimed to investigate whether HMGCR expression in breast cancer patients was associated with patient and tumor characteristics and disease-free survival (DFS)

    Prognostic impact of tumour-specific HMG-CoA reductase expression in primary breast cancer

    Get PDF
    Introduction We have previously reported that tumour-specific expression of the rate-limiting enzyme, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR), in the mevalonate pathway is associated with more favourable tumour parameters in breast cancer. In the present study, we examined the prognostic value of HMG-CoAR expression in a large cohort of primary breast cancer patients with long-term follow up. Methods The expression of HMG-CoAR was assessed by immunohistochemistry on tissue microarrays with tumour specimens from 498 consecutive cases of breast cancer with a median follow-up of 128 months. Kaplan Meier analysis and Cox proportional hazards modelling were used to estimate the rate of recurrence-free survival (RFS) and breast cancer specific survival (BCSS). Results In line with our previous findings, tumour-specific HMG-CoAR expression was associated with low grade (p < 0.001), small size (p = 0.007), oestrogen receptor (ER) positive (p = 0.01), low Ki-67 (p = 0.02) tumours. Patients with tumours expressing HMG-CoAR had a significantly prolonged RFS, even when adjusted for established prognostic factors (relative risk [RR] = 0.60, 95% confidence interval [CI] 0.40 to 0.92; p = 0.02). In ER-negative tumours, however, there was a trend, that was not significantly significant, towards a shorter RFS in HMG-CoAR expressing tumours. Conclusions HMG-CoAR expression is an independent predictor of a prolonged RFS in primary breast cancer. This may, however, not be true for ER-negative tumours. Further studies are needed to shed light on the value of HMG-CoAR expression as a surrogate marker of response to statin treatment, especially with respect to hormone receptor status

    The prognostic role of HER2 expression in ductal breast carcinoma in situ (DCIS); a population-based cohort study

    Get PDF
    Background: HER2 is a well-established prognostic and predictive factor in invasive breast cancer. The role of HER2 in ductal breast carcinoma in situ (DCIS) is debated and recent data have suggested that HER2 is mainly related to in situ recurrences. Our aim was to study HER2 as a prognostic factor in a large population based cohort of DCIS with long-term follow-up. Methods: All 458 patients diagnosed with a primary DCIS 1986-2004 in two Swedish counties were included. Silver-enhanced in situ hybridisation (SISH) was used for detection of HER2 gene amplification and protein expression was assessed by immunohistochemistry (IHC) in tissue microarrays. HER2 positivity was defined as amplified HER2 gene and/or HER2 3+ by IHC. HER2 status in relation to new ipsilateral events (IBE) and Invasive Breast Cancer Recurrences, local or distant (IBCR) was assessed by Kaplan-Meier survival analyses and Cox proportional hazards regression models. Results: Primary DCIS was screening-detected in 75.5 % of cases. Breast conserving surgery (BCS) was performed in 78.6 % of whom 44.0 % received postoperative radiotherapy. No patients received adjuvant endocrine-or chemotherapy. The majority of DCIS could be HER2 classified (N = 420 (91.7 %)); 132 HER2 positive (31 %) and 288 HER2 negative (69 %)). HER2 positivity was related to large tumor size (P = 0.002), high grade (P <0.001) and ER-and PR negativity (P <0.001 for both). During follow-up (mean 184 months), 106 IBCRs and 105 IBEs were identified among all 458 cases corresponding to 54 in situ and 51 invasive recurrences. Eighteen women died from breast cancer and another 114 had died from other causes. The risk of IBCR was statistically significantly lower subsequent to a HER2 positive DCIS compared to a HER2 negative DCIS, (Log-Rank P = 0.03, (HR) 0.60 (95 % CI 0.38-0.94)). Remarkably, the curves did not separate until after 10 years. In ER-stratified analyses, HER2 positive DCIS was associated with lower risk of IBCR among women with ER negative DCIS (Log-Rank P = 0.003), but not for women with ER positive DCIS. Conclusions: Improved prognostic tools for DCIS patients are warranted to tailor adjuvant therapy. Here, we demonstrate that HER2 positive disease in the primary DCIS is associated with lower risk of recurrent invasive breast cancer.Peer reviewe

    Tumor-specific HMG-CoA reductase expression in primary premenopausal breast cancer predicts response to tamoxifen

    Get PDF
    ABSTRACT: INTRODUCTION: We previously reported an association between tumor-specific 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) expression and a good prognosis in breast cancer. Here, the predictive value of HMG-CoAR expression in relation to tamoxifen response was examined. METHODS: HMG-CoAR protein and RNA expression was analyzed in a cell line model of tamoxifen resistance using western blotting and PCR. HMG-CoAR mRNA expression was examined in 155 tamoxifen-treated breast tumors obtained from a previously published gene expression study (Cohort I). HMG-CoAR protein expression was examined in 422 stage II premenopausal breast cancer patients, who had previously participated in a randomized control trial comparing 2 years of tamoxifen with no systemic adjuvant treatment (Cohort II). Kaplan-Meier analysis and Cox proportional hazards modeling were used to estimate the risk of recurrence-free survival (RFS) and the effect of HMG-CoAR expression on tamoxifen response. RESULTS: HMG-CoAR protein and RNA expression were decreased in tamoxifen-resistant MCF7-LCC9 cells compared with their tamoxifen-sensitive parental cell line. HMG-CoAR mRNA expression was decreased in tumors that recurred following tamoxifen treatment (P < 0.001) and was an independent predictor of RFS in Cohort I (hazard ratio = 0.63, P = 0.009). In Cohort II, adjuvant tamoxifen increased RFS in HMG-CoAR-positive tumors (P = 0.008). Multivariate Cox regression analysis demonstrated that HMG-CoAR was an independent predictor of improved RFS in Cohort II (hazard ratio = 0.67, P = 0.010), and subset analysis revealed that this was maintained in estrogen receptor (ER)-positive patients (hazard ratio = 0.65, P = 0.029). Multivariate interaction analysis demonstrated a difference in tamoxifen efficacy relative to HMG-CoAR expression (P = 0.05). Analysis of tamoxifen response revealed that patients with ER-positive/HMG-CoAR tumors had a significant response to tamoxifen (P = 0.010) as well as patients with ER-positive or HMG-CoAR-positive tumors (P = 0.035). Stratification according to ER and HMG-CoAR status demonstrated that ER-positive/HMG-CoAR-positive tumors had an improved RFS compared with ER-positive/HMG-CoAR-negative tumors in the treatment arm (P = 0.033); this effect was lost in the control arm (P = 0.138), however, suggesting that HMG-CoAR predicts tamoxifen response. CONCLUSIONS: HMG-CoAR expression is a predictor of response to tamoxifen in both ER-positive and ER-negative disease. Premenopausal patients with tumors that express ER or HMG-CoAR respond to adjuvant tamoxifen

    Markers of steroid receptor, kinase signalling pathways and Ki-67 expression in relation to tamoxifen sensitivity and resistance

    Get PDF
    Background: It remains clinically important to identify ER positive breast cancers likely to respond to tamoxifen (TAM) and so we aimed to select a group of biomarkers able to predict response. We also assessed whether data from different sample types [tumor microarrays (TMAs) and core biopsies] or tumor sites could be combined for biomarker studies.Methods: A total of 123 endocrine treatment naïve patients with known ER and HER2 status treated with TAM had paraffin-embedded tumor tissue available either as TMAs (n=102) or core biopsies (n=21). TMA cores were collected from three different tumor sites, two central and one peripheral. Ten biomarkers were evaluated by immunohistochemistry, for % positivity and/or H-Score, comprising: ER, HER2, Ki-67, phosphorylated forms of ER (Ser118), IGF1R, PRAS40, Akt & MAPK (ERK1/2), and PTEN & androgen receptor expression (AR). Each tumor was analysed for Akt1 E17K somatic mutation using BEAMing technology. Patient outcome was assessed by clinical benefit (CB) rate & survival analyses [time to progression (TTP) and time to death (TTD)].Results: There was no significant difference in % positivity or H-Score between central & peripheral tumor sites for all biomarkers examined. After False Discovery Rate (FDR) correction differences (P less than 0.05) were observed between the two central samples only for HER2 & pER118 and pPRAS40. However, differences in biomarker expression were common between core biopsies and TMAs. Only 2/123 (1.6%) tumors had Akt1 E17K mutations. Univariate and multivariate analyses identified that lower levels of PTEN and higher levels of Ki-67 (% positivity) were predictive of poor outcome (TTP & TTD) following TAM. Higher ER. lower Ki-67 and AR/ER ratio less than 2 predicted increased CB rate.Conclusions: There were few differences in marker expression between TMAs from different intra-tumoral sites. More marked differences between TMAs and core biopsies suggest caution if combining such datasets. Loss of PTEN, a key regulator of the PI3K/Akt pathway, was the only RTK/kinase signaling biomarker related to poorer clinical outcome. PTEN along with ER & lower Ki-67 proved the most predictive markers for better outcome (TTP & TTD and/or CBR) following TAM treatment
    corecore