208 research outputs found

    Using the Sun to estimate Earth-like planets detection capabilities. V. Parameterizing the impact of solar activity components on radial velocities

    Full text link
    Stellar activity induced by active structures (eg, spots, faculae) is known to strongly impact the radial velocity time series. It then limits the detection of small planetary RV signals (eg, an Earth-mass planet in the habitable zone of a solar-like star). In previous papers, we studied the detectability of such planets around the Sun seen as an edge-on star. For that purpose, we computed the RV and photometric variations induced by solar magnetic activity, using all active structures observed over one entire cycle. Our goal is to perform similar studies on stars with different physical and geometrical properties. As a first step, we focus on Sun-like stars seen with various inclinations, and on estimating detection capabilities with forthcoming instruments. To do so, we first parameterize the solar active structures with the most realistic pattern so as to obtain results consistent with the observed ones. We simulate the growth, evolution and decay of solar spots, faculae and network, using parameters and empiric laws derived from solar observations and literature. We generate the corresponding structure lists over a full solar cycle. We then build the resulting spectra and deduce the RV and photometric variations for a `Sun' seen with various inclinations. The produced RV signal takes into account the photometric contribution of structures as well as the attenuation of the convective blueshift. The comparison between our simulated activity pattern and the observed one validates our model. We show that the inclination of the stellar rotation axis has a significant impact on the time series. RV long-term amplitudes as well as short-term jitters are significantly reduced when going from edge-on to pole-on configurations. Assuming spin-orbit alignment, the optimal configuration for planet detection is an inclined star (i~45{\deg}).Comment: Accepted to Astronomy and Astrophysics on May, 27th 2015. The manuscript includes 22 pages, 20 figure

    A new method of correcting radial velocity time series for inhomogeneous convection

    Full text link
    Magnetic activity strongly impacts stellar RVs and the search for small planets. We showed previously that in the solar case it induces RV variations with an amplitude over the cycle on the order of 8 m/s, with signals on short and long timescales. The major component is the inhibition of the convective blueshift due to plages. We explore a new approach to correct for this major component of stellar radial velocities in the case of solar-type stars. The convective blueshift depends on line depths; we use this property to develop a method that will characterize the amplitude of this effect and to correct for this RV component. We build realistic RV time series corresponding to RVs computed using different sets of lines, including lines in different depth ranges. We characterize the performance of the method used to reconstruct the signal without the convective component and the detection limits derived from the residuals. We identified a set of lines which, combined with a global set of lines, allows us to reconstruct the convective component with a good precision and to correct for it. For the full temporal sampling, the power in the range 100-500~d significantly decreased, by a factor of 100 for a RV noise below 30 cm/s. We also studied the impact of noise contributions other than the photon noise, which lead to uncertainties on the RV computation, as well as the impact of the temporal sampling. We found that these other sources of noise do not greatly alter the quality of the correction, although they need a better noise level to reach a similar performance level. A very good correction of the convective component can be achieved providing very good RV noise levels combined with a very good instrumental stability and realistic granulation noise. Under the conditions considered in this paper, detection limits at 480~d lower than 1 MEarth could be achieved for RV noise below 15 cm/s.Comment: Accepted in A&A 18 July 201

    Extrasolar planets and brown dwarfs around AF-type stars. IX. The HARPS southern sample

    Full text link
    Massive, Main-Sequence AF-type stars have so far remained unexplored in past radial velocity surveys, due to their small number of spectral lines and their high rotational velocities that prevent the classic RV computation method. Our aim was to search for giant planets around AF MS stars, to get first statistical information on their occurrence rate and to compare the results with evolved stars and lower-mass MS stars. We used the HARPS spectrograph located on the 3.6m telescope at ESO La Silla Observatory to observe 108 AF MS stars with B-V in the -0.04 to 0.58 range and masses in the range 1.1-3.6 Msun. We used our SAFIR software specifically developed to compute the radial velocities of these early-type stars. We report the new detection of a mpsini = 4.51 Mjup companion with a ~826-day period to the F6V dwarf HD111998. We present new data on the 2-planet system around the F6IV-V dwarf HD60532. We also report the detection of 14 binaries with long-term RV trends. 70% of our targets show detection limits between 0.1 and 10 Mjup in the 1 to 10^3-day range. We derive brown dwarf (13 < mpsini < 80 Mjup) occurrence rates in the 1 to 10^3-day range of 2−2+52_{-2}^{+5}% and 2.6−2.6+6.72.6_{-2.6}^{+6.7}% for stars with masses in the ranges 1.1-1.5 and 1.5-3 Msun, respectively. As for Jupiter-mass companions (1 < mpsini < 13 Mjup), we get occurrence rates in the 1 to 10^3-day range of 4−0.9+5.94_{-0.9}^{+5.9}% and 6.3−6.3+15.96.3_{-6.3}^{+15.9}% respectively for the same stellar mass ranges. When considering the same Jupiter-mass companions but periods in the 1 to 100-day range only, we get occurrence rates of 2−2+5.22_{-2}^{+5.2}% and 3.9−3.9+9.93.9_{-3.9}^{+9.9}%. Given the present error bars, these results do not show a significant difference with companion frequencies derived for solar-like stars.Comment: 23 pages (text), 15 figures, accepted in Astronomy and Astrophysic

    Variability of stellar granulation and convective blueshift with spectral type and magnetic activity. I. K and G main sequence stars

    Full text link
    In solar-type stars, the attenuation of convective blueshift by stellar magnetic activity dominates the RV variations over the low amplitude signal induced by low mass planets. Models of stars that differ from the Sun will require a good knowledge of the attenuation of the convective blueshift to estimate its impact on the variations. It is therefore crucial to precisely determine not only the amplitude of the convective blueshift for different types of stars, but also the dependence of this convective blueshift on magnetic activity, as these are key factors in our model producing the RV. We studied a sample of main sequence stars with spectral types from G0 to K2 and focused on their temporally averaged properties: the activity level and a criterion allowing to characterise the amplitude of the convective blueshift. We find the differential velocity shifts of spectral lines due to convection to depend on the spectral type, the wavelength (this dependence is correlated with the Teff and activity level), and on the activity level. This allows us to quantify the dependence of granulation properties on magnetic activity for stars other than the Sun. The attenuation factor of the convective blueshift appears to be constant over the considered range of spectral types. We derive a convective blueshift which decreases towards lower temperatures, with a trend in close agreement with models for Teff lower than 5800 K, but with a significantly larger global amplitude. We finally compare the observed RV variation amplitudes with those that could be derived from our convective blueshift using a simple law and find a general agreement on the amplitude. Our results are consistent with previous results and provide, for the first time, an estimation of the convective blueshift as a function of Teff, magnetic activity, and wavelength, over a large sample of G and K main sequence stars

    Toward a renewed Galactic Cepheid distance scale from Gaia and optical interferometry

    Full text link
    Through an innovative combination of multiple observing techniques and mod- eling, we are assembling a comprehensive understanding of the pulsation and close environment of Cepheids. We developed the SPIPS modeling tool that combines all observables (radial velocimetry, photometry, angular diameters from interferometry) to derive the relevant physical parameters of the star (effective temperature, infrared ex- cess, reddening,...) and the ratio of the distance and the projection factor d/p. We present the application of SPIPS to the long-period Cepheid RS Pup, for which we derive p = 1.25 +/- 0.06. The addition of this massive Cepheid consolidates the existing sample of p-factor measurements towards long-period pulsators. This allows us to conclude that p is constant or mildly variable around p = 1.29 +/- 0.04 (+/-3%) as a function of the pulsation period. The forthcoming Gaia DR2 will provide a considerable improvement in quantity and accuracy of the trigonometric parallaxes of Cepheids. From this sample, the SPIPS modeling tool will enable a robust calibration of the Cepheid distance scale.Comment: 5 pages, 4 figures, proceedings of the 22nd Los Alamos Stellar Pulsation Conference "Wide-field variability surveys: a 21st-century perspective" held in San Pedro de Atacama, Chile, Nov. 28-Dec. 2, 201

    The fundamental parameters of the roAp star 10 Aql

    Full text link
    Due to the strong magnetic field and related abnormal surface layers existing in rapidly oscillating Ap stars, systematic errors are likely to be present when determining their effective temperatures, which potentially compromises asteroseismic studies of these pulsators. Using long-baseline interferometry, our goal is to determine accurate angular diameters of a number of roAp targets to provide a temperature calibration for these stars. We obtained interferometric observations of 10 Aql with the visible spectrograph VEGA at the CHARA array. We determined a limb-darkened angular diameter of 0.275+/-0.009 mas and deduced a linear radius of 2.32+/-0.09 R_sun. We estimated the star's bolometric flux and used it, in combination with its parallax and angular diameter, to determine the star's luminosity and effective temperature. For two data sets of bolometric flux we derived an effective temperature of 7800+/-170 K and a luminosity of 18+/-1 L_sun or of 8000+/-210 K and 19+/-2 L_sun. We used these fundamental parameters together with the large frequency separation to constrain the mass and the age of 10 Aql, using the CESAM stellar evolution code. Assuming a solar chemical composition and ignoring all kinds of diffusion and settling of elements, we obtained a mass of 1.92 M_sun and an age of 780 Gy or a mass of 1.95 M_sun and an age of 740 Gy, depending on the considered bolometric flux. For the first time, we managed to determine an accurate angular diameter for a star smaller than 0.3 mas and to derive its fundamental parameters. In particular, by only combining our interferometric data and the bolometric flux, we derived an effective temperature that can be compared to those derived from atmosphere models. Such fundamental parameters can help for testing the mechanism responsible for the excitation of the oscillations observed in the magnetic pulsating stars

    Extrasolar planets and brown dwarfs around A--F type stars. VIII. A giant planet orbiting the young star HD113337

    Full text link
    In the frame of the search for extrasolar planets and brown dwarfs around early-type main-sequence stars, we present the detection of a giant planet around the young F-type star HD113337. We estimated the age of the system to be 150 +100/-50 Myr. Interestingly, an IR excess attributed to a cold debris disk was previously detected on this star. The SOPHIE spectrograph on the 1.93m telescope at Observatoire de Haute-Provence was used to obtain ~300 spectra over 6 years. We used our SAFIR tool, dedicated to the spectra analysis of A and F stars, to derive the radial velocity variations. The data reveal a 324.0 +1.7/-3.3 days period that we attribute to a giant planet with a minimum mass of 2.83 +- 0.24 Mjup in an eccentric orbit with e=0.46 +- 0.04. A long-term quadratic drift, that we assign to be probably of stellar origin, is superimposed to the Keplerian solution.Comment: 7 pages, 4 figure

    The SOPHIE search for northern extrasolar planets: VI. Three new hot Jupiters in multi-planet extrasolar systems

    Full text link
    We present high-precision radial-velocity measurements of three solar-type stars: HD 13908, HD 159243, and HIP 91258. The observations were made with the SOPHIE spectrograph at the 1.93-m telescope of Observatoire de Haute-Provence (France). They show that these three bright stars host exoplanetary systems composed of at least two companions. HD 13908 b is a planet with a minimum mass of 0.865+-0.035 Mjup, on a circular orbit with a period of 19.382+-0.006 days. There is an outer massive companion in the system with a period of 931+-17 days, e = 0.12+-0.02, and a minimum mass of 5.13+-0.25 Mjup. The star HD 159243, also has two detected companions with respective masses, periods, and eccentricities of Mp = 1.13+-0.05 and 1.9+-0.13 Mjup, PP = 12.620+-0.004 and 248.4+-4.9 days, and e = 0.02+-0.02 and 0.075+-0.05. Finally, the star HIP 91258 has a planetary companion with a minimum mass of 1.068+-0.038 Mjup, an orbital period of 5.0505+-0.0015 days, and a quadratic trend indicating an outer planetary or stellar companion that is as yet uncharacterized. The planet-hosting stars HD 13908, HD 159243, and HIP 91258 are main-sequence stars of spectral types F8V, G0V, and G5V, respectively, with moderate activity levels. HIP 91258 is slightly over-metallic, while the two other stars have solar-like metallicity. The three systems are discussed in the frame of formation and dynamical evolution models of systems composed of several giant planets.Comment: accepted in A&

    The SOPHIE search for northern extrasolar planets. XI. Three new companions and an orbit update: Giant planets in the habitable zone

    Full text link
    We report the discovery of three new substellar companions to solar-type stars, HD191806, HD214823, and HD221585, based on radial velocity measurements obtained at the Haute-Provence Observatory. Data from the SOPHIE spectrograph are combined with observations acquired with its predecessor, ELODIE, to detect and characterise the orbital parameters of three new gaseous giant and brown dwarf candidates. Additionally, we combine SOPHIE data with velocities obtained at the Lick Observatory to improve the parameters of an already known giant planet companion, HD16175 b. Thanks to the use of different instruments, the data sets of all four targets span more than ten years. Zero-point offsets between instruments are dealt with using Bayesian priors to incorporate the information we possess on the SOPHIE/ELODIE offset based on previous studies. The reported companions have orbital periods between three and five years and minimum masses between 1.6 Mjup and 19 Mjup. Additionally, we find that the star HD191806 is experiencing a secular acceleration of over 11 \ms\ per year, potentially due to an additional stellar or substellar companion. A search for the astrometric signature of these companions was carried out using Hipparcos data. No orbit was detected, but a significant upper limit to the companion mass can be set for HD221585, whose companion must be substellar. With the exception of HD191806 b, the companions are located within the habitable zone of their host star. Therefore, satellites orbiting these objects could be a propitious place for life to develop.Comment: 12 pages + tables, 7 figures. Accepted for publication in Astronomy & Astrophysic
    • …
    corecore