1,258 research outputs found

    Embroidered Electromyography: A Systematic Design Guide

    Get PDF

    Designing Embroidered Electrodes for Wearable Surface Electromyography

    Get PDF
    This work was supported by the UK Crafts Council as part of the Parallel Practices project, by the Seventh Framework Programme of the European Commission under grant agreement 287728 in the framework of EU project STIFF-FLOP and by the Horizon 2020 Research and Innovation Programme under grant agreement 637095 in the framework of EU project FourByThree

    Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized

    Get PDF
    Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades, knowledge based potentials based on pairwise distances -- so-called "potentials of mean force" (PMFs) -- have been center stage in the prediction and design of protein structure and the simulation of protein folding. However, the validity, scope and limitations of these potentials are still vigorously debated and disputed, and the optimal choice of the reference state -- a necessary component of these potentials -- is an unsolved problem. PMFs are loosely justified by analogy to the reversible work theorem in statistical physics, or by a statistical argument based on a likelihood function. Both justifications are insightful but leave many questions unanswered. Here, we show for the first time that PMFs can be seen as approximations to quantities that do have a rigorous probabilistic justification: they naturally arise when probability distributions over different features of proteins need to be combined. We call these quantities reference ratio distributions deriving from the application of the reference ratio method. This new view is not only of theoretical relevance, but leads to many insights that are of direct practical use: the reference state is uniquely defined and does not require external physical insights; the approach can be generalized beyond pairwise distances to arbitrary features of protein structure; and it becomes clear for which purposes the use of these quantities is justified. We illustrate these insights with two applications, involving the radius of gyration and hydrogen bonding. In the latter case, we also show how the reference ratio method can be iteratively applied to sculpt an energy funnel. Our results considerably increase the understanding and scope of energy functions derived from known biomolecular structures

    A new resorbable device for ligation of blood vessels - A pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During surgery, controlled haemostasis to prevent blood loss is vital for a successful outcome. It can be difficult to ligate vessels located deep in the abdomen. A device that is easy to use and enables secure ligatures could be beneficial. Cable ties made of nylon have been used for ligation but the non-resorbable material caused tissue reactions. The objective of this study was to use a resorbable material to construct a device with a self-locking mechanism and to test its mechanical strength and ligation efficiency.</p> <p>Methods</p> <p>The device was manufactured by injection moulding of polydioxanone, a resorbable polymer used for suture materials. Polydioxanone with inherent viscosities of 1.9 dL/g and 1.3 dL/g were tested. The device consisted of a perforated flexible band which could be pulled through a case with a locking mechanism. After a first version of the device had been tested, some improvements were made. The locking case was downsized, corners were rounded off, the band was made thicker and the mould was redesigned to produce longer devices. Tensile tests were performed with the second version.</p> <p>The first version of the device was used to ligate the ovarian pedicle in a euthanized dog and to test echogenicity of the device with ultrasound. Compression of vessels of the ovarian pedicle was examined by histology. Both versions of the device were tested for haemostasis of and tissue grip on renal arteries in six anaesthetised pigs.</p> <p>Results</p> <p>The tensile strength of the flexible band of the devices with inherent viscosity of 1.9 dL/g was 50.1 ± 5.5 N (range 35.2-62.9 N, <it>n </it>= 11) and the devices with inherent viscosity of 1.3 dL/g had a tensile strength of 39.8 ± 8.1 N (range 18.6-54.2 N, <it>n </it>= 11). Injection moulding of the polymer with lower inherent viscosity resulted in a longer flow distance.</p> <p>Both versions of the device had an effective tissue grip and complete haemostasis of renal arteries was verified. The device attached to the ovarian pedicle could be seen with ultrasound, and vessel compression and occlusion were verified by histology.</p> <p>Conclusions</p> <p>Tests of functionality of the device showed complete haemostasis and good tissue grip. Devices with a band of sufficient length were easily applied and tightened in tissue.</p

    Effects of lowering body temperature via hyperhydration, with and without glycerol ingestion and practical precooling on cycling time trial performance in hot and humid conditions

    Get PDF
    Background: Hypohydration and hyperthermia are factors that may contribute to fatigue and impairment of endurance performance. The purpose of this study was to investigate the effectiveness of combining glycerol hyperhydration and an established precooling technique on cycling time trial performance in hot environmental conditions.Methods: Twelve well-trained male cyclists performed three 46.4-km laboratory-based cycling trials that included two climbs, under hot and humid environmental conditions (33.3 ± 1.1°C; 50 ± 6% r.h.). Subjects were required to hyperhydrate with 25 g.kg-1 body mass (BM) of a 4°C beverage containing 6% carbohydrate (CON) 2.5 h prior to the time trial. On two occasions, subjects were also exposed to an established precooling technique (PC) 60 min prior to the time trial, involving 14 g.kg-1 BM ice slurry ingestion and applied iced towels over 30 min. During one PC trial, 1.2 g.kg-1 BM glycerol was added to the hyperhydration beverage in a double-blind fashion (PC+G). Statistics used in this study involve the combination of traditional probability statistics and a magnitude-based inference approach.Results: Hyperhydration resulted in large reductions (-0.6 to -0.7°C) in rectal temperature. The addition of glycerol to this solution also lowered urine output (330 ml, 10%). Precooling induced further small (-0.3°C) to moderate (-0.4°C) reductions in rectal temperature with PC and PC+G treatments, respectively, when compared with CON (0.0°C, P\u3c0.05). Overall, PC+G failed to achieve a clear change in cycling performance over CON, but PC showed a possible 2% (30 s, P=0.02) improvement in performance time on climb 2 compared to CON. This improvement was attributed to subjects\u27 lower perception of effort reported over the first 10 km of the trial, despite no clear performance change during this time. No differences were detected in any other physiological measurements throughout the time trial.Conclusions: Despite increasing fluid intake and reducing core temperature, performance and thermoregulatory benefits of a hyperhydration strategy with and without the addition of glycerol, plus practical precooling, were not superior to hyperhydration alone. Further research is warranted to further refine preparation strategies for athletes competing in thermally stressful events to optimize health and maximize performance outcomes

    Desferrioxamine decreases NAD redox potential of intact red blood cells: evidence for desferrioxamine as an inducer of oxidant stress in red blood cells

    Get PDF
    BACKGROUND: Desferrioxamine (DFO) is an important iron chelating agent. It has also been thought of as an agent with anti-oxidant potential as it chelates ferric iron in various parts of the body. However, there is evidence suggesting that it may paradoxically affect red blood cells (RBC) by inducing intracellular oxidant stress. To further understand the mechanism of DFO's interaction with RBC, we conducted a study to determine the effect of DFO upon RBC's redox status. METHODS: We examined NAD redox potential in intact RBC (N = 5) incubated with DFO. RBC were incubated with 6 mM DFO for 2 hours. RESULTS: Significant decreases in NAD redox potential were observed after incubation of RBC with 6 mM DFO. The mean decrease was 10.01 ± 1.98% (p < 0.0004). CONCLUSIONS: The data confirm the oxidant effect of DFO on RBC
    corecore