637 research outputs found
Melting behavior of ultrathin titanium nanowires
The thermal stability and melting behavior of ultrathin titanium nanowires
with multi-shell cylindrical structures are studied using molecular dynamic
simulation. The melting temperatures of titanium nanowires show remarkable
dependence on wire sizes and structures. For the nanowire thinner than 1.2 nm,
there is no clear characteristic of first-order phase transition during the
melting, implying a coexistence of solid and liquid phases due to finite size
effect. An interesting structural transformation from helical multi-shell
cylindrical to bulk-like rectangular is observed in the melting process of a
thicker hexagonal nanowire with 1.7 nm diameter.Comment: 4 pages, 4 figure
Dimension of the Torelli group for Out(F_n)
Let T_n be the kernel of the natural map from Out(F_n) to GL(n,Z). We use
combinatorial Morse theory to prove that T_n has an Eilenberg-MacLane space
which is (2n-4)-dimensional and that H_{2n-4}(T_n,Z) is not finitely generated
(n at least 3). In particular, this recovers the result of Krstic-McCool that
T_3 is not finitely presented. We also give a new proof of the fact, due to
Magnus, that T_n is finitely generated.Comment: 27 pages, 9 figure
Sturmian morphisms, the braid group B_4, Christoffel words and bases of F_2
We give a presentation by generators and relations of a certain monoid
generating a subgroup of index two in the group Aut(F_2) of automorphisms of
the rank two free group F_2 and show that it can be realized as a monoid in the
group B_4 of braids on four strings. In the second part we use Christoffel
words to construct an explicit basis of F_2 lifting any given basis of the free
abelian group Z^2. We further give an algorithm allowing to decide whether two
elements of F_2 form a basis or not. We also show that, under suitable
conditions, a basis has a unique conjugate consisting of two palindromes.Comment: 25 pages, 4 figure
Dilogarithm Identities in Conformal Field Theory and Group Homology
Recently, Rogers' dilogarithm identities have attracted much attention in the
setting of conformal field theory as well as lattice model calculations. One of
the connecting threads is an identity of Richmond-Szekeres that appeared in the
computation of central charges in conformal field theory. We show that the
Richmond-Szekeres identity and its extension by Kirillov-Reshetikhin can be
interpreted as a lift of a generator of the third integral homology of a finite
cyclic subgroup sitting inside the projective special linear group of all real matrices viewed as a {\it discrete} group. This connection
allows us to clarify a few of the assertions and conjectures stated in the work
of Nahm-Recknagel-Terhoven concerning the role of algebraic -theory and
Thurston's program on hyperbolic 3-manifolds. Specifically, it is not related
to hyperbolic 3-manifolds as suggested but is more appropriately related to the
group manifold of the universal covering group of the projective special linear
group of all real matrices viewed as a topological group. This
also resolves the weaker version of the conjecture as formulated by Kirillov.
We end with the summary of a number of open conjectures on the mathematical
side.Comment: 20 pages, 2 figures not include
The Mathematical Universe
I explore physics implications of the External Reality Hypothesis (ERH) that
there exists an external physical reality completely independent of us humans.
I argue that with a sufficiently broad definition of mathematics, it implies
the Mathematical Universe Hypothesis (MUH) that our physical world is an
abstract mathematical structure. I discuss various implications of the ERH and
MUH, ranging from standard physics topics like symmetries, irreducible
representations, units, free parameters, randomness and initial conditions to
broader issues like consciousness, parallel universes and Godel incompleteness.
I hypothesize that only computable and decidable (in Godel's sense) structures
exist, which alleviates the cosmological measure problem and help explain why
our physical laws appear so simple. I also comment on the intimate relation
between mathematical structures, computations, simulations and physical
systems.Comment: Replaced to match accepted Found. Phys. version, 31 pages, 5 figs;
more details at http://space.mit.edu/home/tegmark/toe.htm
System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV
We present azimuthal angle correlations of intermediate transverse momentum
(1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) =
62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is
broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and
semi-central collisions in all the systems. The broadening and peak location
are found to depend upon the number of participants in the collision, but not
on the collision energy or beam nuclei. These results are consistent with sound
or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables.
Submitted to Physical Review Letters. Plain text data tables for the points
plotted in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Improved Measurement of Double Helicity Asymmetry in Inclusive Midrapidity pi^0 Production for Polarized p+p Collisions at sqrt(s)=200 GeV
We present an improved measurement of the double helicity asymmetry for pi^0
production in polarized proton-proton scattering at sqrt(s) = 200 GeV employing
the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The
improvements to our previous measurement come from two main factors: Inclusion
of a new data set from the 2004 RHIC run with higher beam polarizations than
the earlier run and a recalibration of the beam polarization measurements,
which resulted in reduced uncertainties and increased beam polarizations. The
results are compared to a Next to Leading Order (NLO) perturbative Quantum
Chromodynamics (pQCD) calculation with a range of polarized gluon
distributions.Comment: 389 authors, 4 pages, 2 tables, 1 figure. Submitted to Phys. Rev. D,
Rapid Communications. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
Heavy Quarks and Heavy Quarkonia as Tests of Thermalization
We present here a brief summary of new results on heavy quarks and heavy
quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma
Thermalization" Workshop in Vienna, Austria in August 2005, directly following
the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop
(Vienna August 2005) Proceeding
Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The invariant differential cross section for inclusive electron production in
p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment
at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4
<= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the
inclusive electron spectrum from semileptonic decays of hadrons carrying heavy
flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via
three independent methods. The resulting electron spectrum from heavy flavor
decays is compared to recent leading and next-to-leading order perturbative QCD
calculations. The total cross section of charm quark-antiquark pair production
is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV
The PHENIX experiment has measured mid-rapidity transverse momentum spectra
(0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au
collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and
from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were
removed. The resulting non-photonic electron spectra are primarily due to the
semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification
factors were determined by comparison to non-photonic electrons in p+p
collisions. A significant suppression of electrons at high p_T is observed in
central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …