52 research outputs found

    Verification of the semiclassical method for an electron moving in a homogeneous magnetic field

    Full text link
    A procedure based on the semiclassical approximation for high energy levels is developed to yield solutions to the classical equation of charge motion and to the Bargmann-Michel-Telegdi spin equation. To this end, exact solutions to the Klein-Gordon and the Dirac-Pauli equations are used. The essence of the procedure under review is that the quantum state of a charged particle in a homogeneous magnetic field is represented as a superposition of states corresponding to the neighboring energy levels. As a consequence, the behavior of the expectation values of the momentum and spin operators with respect to the resulting nonstationary wave function (packet) strictly obey the classical equations of charge motion and spin precession.Comment: 9 pages, REVTE

    Spin-orbital motion and Thomas precession in the classical and quantum theories

    Get PDF
    The motion of a magnetic spin particle in electromagnetic fields is considered on the basis of general principles of the classical relativistic theory. Alternative approaches in derivation of the equations of charge motion and spin precession, the problem of noncollinearity of the momentum and velocity of a particle with spin, the origin and the meaning of Thomas precession in dynamics of the spin particle are also considered. The correspondence principle in the spin theory is discussed.Comment: 13 pages, LATEX, to be published in Proceedings of "Ninth Lomonosov Conference on Elementary Particle Physics", World Scientifi

    Synchrotron Radiation in the Standard Model Extension

    Full text link
    We obtain a system of exact solutions of the Dirac equation for an electron moving in a constant homogeneous external magnetic field with account of its vacuum magnetic moment and assumed Lorentz invariance violation in the minimal CPT-odd form in the framework of the Standard Model Extension. Using these solutions, characteristics of the particle synchrotron radiation are calculated, and possible observable effects caused by the Lorentz non-invariant interaction are described. We demonstrate that the angular distribution of the radiation has specific asymmetry, which can be explained as a consequence of non-conservation of transversal electron polarization in the presence of a background Lorentz non-invariant condensate field.Comment: 14 pages, 2 figure

    Radiative transitions of high energy neutrino in dense matter

    Full text link
    The quantum theory of the ``spin light'' (electromagnetic radiation emitted by a massive neutrino propagating in dense matter due to the weak interaction of a neutrino with background fermions) is developed. In contrast to the Cherenkov radiation, this effect does not disappear even if the medium refractive index is assumed to be equal to unity. The formulas for the transition rate and the total radiation power are obtained. It is found out that radiation of photons is possible only when the sign of the particle helicity is opposite to that of the effective potential describing the interaction of a neutrino (antineutrino) with the background medium. Due to the radiative self-polarization the radiating particle can change its helicity. As a result, the active left-handed polarized neutrino (right-handed polarized antineutrino) converting to the state with inverse helicity can become practically ``sterile''. Since the sign of the effective potential depends on the neutrino flavor and the matter structure, the ``spin light'' can change a ratio of active neutrinos of different flavors. In the ultra relativistic approach, the radiated photons averaged energy is equal to one third of the initial neutrino energy, and two thirds of the energy are carried out by the final ``sterile'' neutrinos. This fact can be important for the understanding of the ``dark matter'' formation mechanism on the early stages of evolution of the Universe.Comment: 7 pages, latex, one misprint in eq. 12 correcte

    Charged particles in crossed and longitudinal electromagnetic fields and beam guides

    Full text link
    We consider a class of electromagnetic fields that contains crossed fields combined with longitudinal electric and magnetic fields. We study the motion of a classical particle (solutions of the Lorentz equations) in such fields. Then, we present an analysis that allows one to decide which fields from the class act as a beam guide for charged particles, and we find some time-independent and time-dependent configurations with beam guiding properties. We demonstrate that the Klein-Gordon and Dirac equations with all the fields from the class can be solved exactly. We study these solutions, which were not known before, and prove that they form complete and orthogonal sets of functions.Comment: 14 page

    Radiation reaction for multipole moments

    Get PDF
    We propose a Poincare-invariant description for the effective dynamics of systems of charged particles by means of intrinsic multipole moments. To achieve this goal we study the effective dynamics of such systems within two frameworks -- the particle itself and hydrodynamical one. We give a relativistic-invariant definition for the intrinsic multipole moments both pointlike and extended relativistic objects. Within the hydrodynamical framework we suggest a covariant action functional for a perfect fluid with pressure. In the case of a relativistic charged dust we prove the equivalence of the particle approach to the hydrodynamical one to the problem of radiation reaction for multipoles. As the particular example of a general procedure we obtain the effective model for a neutral system of charged particles with dipole moment.Comment: 12 pages, 1 figure, RevTeX 4; references updated, minor textual correction

    Spin polarization of electrons by ultraintense lasers

    Get PDF
    Electrons in plasmas produced by next-generation ultraintense lasers (I>5×1022W/cm2) can be spin polarized to a high degree (10%-70%) by the laser pulses on a femtosecond time scale. This is due to electrons undergoing spin-flip transitions as they radiate γ-ray photons, preferentially spin polarizing in one direction. Spin polarization can modify the radiation reaction force on the electrons, which differs by up to 30% for opposite spin polarizations. Consequently, the polarization of the radiated γ-ray photons is also modified: the relative power radiated in the σ and π components increases and decreases by up to 30%, respectively, potentially reducing the rate of pair production in the plasma by up to 30%

    Radiative Effects in the Standard Model Extension

    Full text link
    The possibility of radiative effects induced by the Lorentz and CPT non-invariant interaction term for fermions in the Standard Model Extension is investigated. In particular, electron-positron photo-production and photon emission by electrons and positrons are studied. The rates of these processes are calculated in the Furry picture. It is demonstrated that the rates obtained in the framework of the model adopted strongly depend on the polarization states of the particles involved. As a result, ultra-relativistic particles produced should occupy states with a preferred spin orientation, i.e., photons have the sign of polarization opposite to the sign of the effective potential, while charged particle are preferably in the state with the helicity coinciding with the sign of the effective potential. This leads to evident spatial asymmetries which may have certain consequences observable at high energy accelerators, and in astrophysical and cosmological studies.Comment: 10 pages, 2 figures, Revtex4, to appear in Phys.Rev.D, misprints are correcte
    corecore