20 research outputs found

    Impact of Saccharomyces cerevisiae yeast inoculation mode on wine composition

    Get PDF
    Inoculation modes are known to affect yeast behavior. Here, we characterized the impact of ADY and pre-culturing on the composition of the resulting wine, fermented by four commercial strains of Saccharomyces cerevisiae. Classical oenological parameters were not affected by the yeast inoculation mode. Using an untargeted metabolomic approach, a significant distinction in wine composition was noted regardless of the strain between the two inoculation modes, each associated with a specific metabolomic signature. 218 and 895 biomarkers were annotated, respectively, for ADYs associated with the preservation of wine polyphenols, and for pre-cultures related to the modulation of yeast nitrogen metabolism. Volatilome analysis revealed that the ester family was that most impacted by the inoculation mode whatever the strain. Ester production was enhanced in ADY condition. For the first time, the complete reprogramming of the yeast metabolism was revealed as a function of yeast preparation, which significantly impacts its volatilome and exometabolome

    Different Wines from Different Yeasts? 'Saccharomyces cerevisiae Intraspecies Differentiation by Metabolomic Signature and Sensory Patterns in Wine'

    Get PDF
    Alcoholic fermentation is known to be a key stage in the winemaking process that directly impacts the composition and quality of the final product. Twelve wines were obtained from fermentations of Chardonnay must made with twelve different commercial wine yeast strains of Saccharomyces cerevisiae. In our study, FT-ICR-MS, GC-MS, and sensory analysis were combined with multivariate analysis. Ultra-high-resolution mass spectrometry (uHRMS) was able to highlight hundreds of metabolites specific to each strain from the same species, although they are characterized by the same technological performances. Furthermore, the significant involvement of nitrogen metabolism in this differentiation was considered. The modulation of primary metabolism was also noted at the volatilome and sensory levels. Sensory analysis allowed us to classify wines into three groups based on descriptors associated with white wine. Thirty-five of the volatile compounds analyzed, including esters, medium-chain fatty acids, superior alcohols, and terpenes discriminate and give details about differences between wines. Therefore, phenotypic differences within the same species revealed metabolic differences that resulted in the diversity of the volatile fraction that participates in the palette of the sensory pattern. This original combination of metabolomics with the volatilome and sensory approaches provides an integrative vision of the characteristics of a given strain. Metabolomics shine the new light on intraspecific discrimination in the Saccharomyces cerevisiae species Keywords: yeast; Saccharomyces cerevisiae; Chardonnay wine; metabolomic; volatile compounds; sensory analysi

    Yeast–Yeast Interactions: Mechanisms, Methodologies and Impact on Composition

    No full text
    During the winemaking process, alcoholic fermentation is carried out by a consortium of yeasts in which interactions occurs. The consequences of these interactions on the wine matrix have been widely described for several years with the aim of controlling the winemaking process as well as possible. In this review, we highlight the wide diversity of methodologies used to study these interactions, and their underlying mechanisms and consequences on the final wine composition and characteristics. The wide variety of matrix parameters, yeast couples, and culture conditions have led to contradictions between the results of the different studies considered. More recent aspects of modifications in the composition of the matrix are addressed through different approaches that have not been synthesized recently. Non-volatile and volatile metabolomics, as well as sensory analysis approaches are developed in this paper. The description of the matrix composition modification does not appear sufficient to explain interaction mechanisms, making it vital to take an integrated approach to draw definite conclusions on them

    Interactome entre micro-organismes au cours la fermentation alcoolique des vins

    No full text
    The study of interactions between microorganisms is of major interest in oenology for various applications, including the modulation of the aromatic profile of wines. The interactions between Saccharomyces and non-Saccharomyces yeasts are widely described in the literature. On the contrary, interactions during alcoholic fermentation between S. cerevisiae strains, known for their technological properties in oenology, have been little studied.In this work, twelve strains of S. cerevisiae and their impact on wine were characterized in pure cultures using an integrative approach that combines microbiological, chemical, metabolomic and sensory approaches. An important intraspecific diversity was highlighted, leading to wines with specific chemical compositions and distinct sensory profiles. Four of these twelve strains were selected for their different metabolomic and sensory fingerprints in order to study the interactions between S. cerevisiae strains. To discriminate between strains of the same species using flow cytometry, tool of choice for real-time monitoring of growth kinetics, a gene coding for a fluorescent protein was integrated by CRISPR-Cas9 into the genome of one of these four selected strains. Although no phenotypic impact was observed, the integration of this gene had a significant effect on the metabolome and mainly the peptidome. 102 biomarkers specific to the modified strain or whose intensity was significantly modulated were revealed. The modified strain was integrated into co-cultures with each of the other three selected S. cerevisiae strains. These three co-cultures did not differ in population dynamics. On the other hand, their association to conduct alcoholic fermentation leads to wines with different chemical compositions than those from the associated pure cultures. Moreover, the wines from the co-cultures were remarkably different (metabolomically and sensorially) from the wine blends issued of the pure cultures. Esters, fatty acids and phenol families were affected by coculture regarding volatile compounds. High resolution mass spectrometry allowed to revealed thousands of coculture biomarkers. Metabolic pathways involved in these wine composition changes were highlighted and most belong to nitrogen metabolism including the pathways of amino acid metabolism, such as tryptophan and phenylalanine. Thus, non-neutral interaction phenomena were highlighted. It should be noted that interaction mechanisms differ according to the strains involved. It is necessary to take into account these phenomena when associating two strains whose impacts cannot be defined only according to the population dynamics. Understanding these phenomena will allow to optimize the use of mixed S. cerevisiae starter cultures in oenology.L'étude des interactions mises en jeu entre micro-organismes est d'intérêt majeur en œnologie pour diverses applications dont la modulation du profil aromatique des vins. Dans cette démarche, les interactions entre levures Saccharomyces et non-Saccharomyces sont largement décrites dans la littérature. Au contraire, les interactions au cours de la fermentation alcoolique entre souches de Saccharomyces cerevisiae, reconnue pour ses propriétés technologiques en œnologie, sont peu étudiées.Dans le cadre de ces travaux, douze souches de S. cerevisiae et leur impact sur le vin ont été caractérisés en culture pure selon une démarche intégrative qui combine des approches microbiologique, chimique, métabolomique et sensorielle. Une importante diversité intraspécifique a été mise en évidence conduisant à des vins de compositions chimiques spécifiques, aux profils sensoriels distincts. Quatre de ces douze souches ont été sélectionnées pour leurs différences d'empreintes métabolomique et sensorielle en vue de l'étude des interactions intervenant entre souches de S. cerevisiae. Afin de discriminer des souches d'une même espèce en cytométrie en flux, outil de choix pour suivre en temps réel une cinétique de croissance, un gène codant pour une protéine fluorescente a été intégré par CRISPR-Cas9 au sein du génome de l'une des quatre souches sélectionnées. Même si aucun impact phénotypique n'a été observé l'intégration de ce gène a eu un effet notable à l'échelle du métabolome et principalement du peptidome. 102 biomarqueurs spécifiques de la souche modifiée ou dont l'intensité a été significativement modulée ont été extraits. La souche modifiée a été intégrée au sein de co-cultures avec chacune des trois autres souches de S. cerevisiae sélectionnées. Ces trois co-cultures ne présentent pas de différence de dynamique de populations. En revanche, leur association pour mener la fermentation alcoolique conduit à des vins de compositions chimiques différentes de ceux issus des cultures pures associées. Par ailleurs, les vins issus des co-cultures se sont remarquablement distingués (métabolomique et sensoriel) des assemblages de vins des cultures pures correspondants. Au regard du volatilome, les familles des esters, des acides gras et des phénols ont été affectées par la co-culture.La spectrométrie de masse à haute résolution a permis de révéler des centaines de biomarqueurs spécifiques des cocultures. Les voies métaboliques impliquées dans ces changements de composition du vin ont été mises en évidence et la plupart appartiennent au métabolisme de l'azote incluant les voies du métabolisme des acides aminés, dont celui du tryptophane ou encore de la phénylalanine. Ainsi, des phénomènes d'interactions non neutres ont été mis en évidence. Il est à noter que les mécanismes diffèrent selon les souches en présence. Il est nécessaire de prendre en compte ces phénomènes lors de l'association de deux souches dont les impacts ne peuvent être définis uniquement selon les dynamiques de populations. La compréhension de ces phénomènes permettra d'optimiser le recours à l'utilisation de levains mixtes de S. cerevisiae en œnologie

    Micro-organisms interactome during wine alcoholic fermentation

    No full text
    L'étude des interactions mises en jeu entre micro-organismes est d'intérêt majeur en œnologie pour diverses applications dont la modulation du profil aromatique des vins. Dans cette démarche, les interactions entre levures Saccharomyces et non-Saccharomyces sont largement décrites dans la littérature. Au contraire, les interactions au cours de la fermentation alcoolique entre souches de Saccharomyces cerevisiae, reconnue pour ses propriétés technologiques en œnologie, sont peu étudiées.Dans le cadre de ces travaux, douze souches de S. cerevisiae et leur impact sur le vin ont été caractérisés en culture pure selon une démarche intégrative qui combine des approches microbiologique, chimique, métabolomique et sensorielle. Une importante diversité intraspécifique a été mise en évidence conduisant à des vins de compositions chimiques spécifiques, aux profils sensoriels distincts. Quatre de ces douze souches ont été sélectionnées pour leurs différences d'empreintes métabolomique et sensorielle en vue de l'étude des interactions intervenant entre souches de S. cerevisiae. Afin de discriminer des souches d'une même espèce en cytométrie en flux, outil de choix pour suivre en temps réel une cinétique de croissance, un gène codant pour une protéine fluorescente a été intégré par CRISPR-Cas9 au sein du génome de l'une des quatre souches sélectionnées. Même si aucun impact phénotypique n'a été observé l'intégration de ce gène a eu un effet notable à l'échelle du métabolome et principalement du peptidome. 102 biomarqueurs spécifiques de la souche modifiée ou dont l'intensité a été significativement modulée ont été extraits. La souche modifiée a été intégrée au sein de co-cultures avec chacune des trois autres souches de S. cerevisiae sélectionnées. Ces trois co-cultures ne présentent pas de différence de dynamique de populations. En revanche, leur association pour mener la fermentation alcoolique conduit à des vins de compositions chimiques différentes de ceux issus des cultures pures associées. Par ailleurs, les vins issus des co-cultures se sont remarquablement distingués (métabolomique et sensoriel) des assemblages de vins des cultures pures correspondants. Au regard du volatilome, les familles des esters, des acides gras et des phénols ont été affectées par la co-culture.La spectrométrie de masse à haute résolution a permis de révéler des centaines de biomarqueurs spécifiques des cocultures. Les voies métaboliques impliquées dans ces changements de composition du vin ont été mises en évidence et la plupart appartiennent au métabolisme de l'azote incluant les voies du métabolisme des acides aminés, dont celui du tryptophane ou encore de la phénylalanine. Ainsi, des phénomènes d'interactions non neutres ont été mis en évidence. Il est à noter que les mécanismes diffèrent selon les souches en présence. Il est nécessaire de prendre en compte ces phénomènes lors de l'association de deux souches dont les impacts ne peuvent être définis uniquement selon les dynamiques de populations. La compréhension de ces phénomènes permettra d'optimiser le recours à l'utilisation de levains mixtes de S. cerevisiae en œnologie.The study of interactions between microorganisms is of major interest in oenology for various applications, including the modulation of the aromatic profile of wines. The interactions between Saccharomyces and non-Saccharomyces yeasts are widely described in the literature. On the contrary, interactions during alcoholic fermentation between S. cerevisiae strains, known for their technological properties in oenology, have been little studied.In this work, twelve strains of S. cerevisiae and their impact on wine were characterized in pure cultures using an integrative approach that combines microbiological, chemical, metabolomic and sensory approaches. An important intraspecific diversity was highlighted, leading to wines with specific chemical compositions and distinct sensory profiles. Four of these twelve strains were selected for their different metabolomic and sensory fingerprints in order to study the interactions between S. cerevisiae strains. To discriminate between strains of the same species using flow cytometry, tool of choice for real-time monitoring of growth kinetics, a gene coding for a fluorescent protein was integrated by CRISPR-Cas9 into the genome of one of these four selected strains. Although no phenotypic impact was observed, the integration of this gene had a significant effect on the metabolome and mainly the peptidome. 102 biomarkers specific to the modified strain or whose intensity was significantly modulated were revealed. The modified strain was integrated into co-cultures with each of the other three selected S. cerevisiae strains. These three co-cultures did not differ in population dynamics. On the other hand, their association to conduct alcoholic fermentation leads to wines with different chemical compositions than those from the associated pure cultures. Moreover, the wines from the co-cultures were remarkably different (metabolomically and sensorially) from the wine blends issued of the pure cultures. Esters, fatty acids and phenol families were affected by coculture regarding volatile compounds. High resolution mass spectrometry allowed to revealed thousands of coculture biomarkers. Metabolic pathways involved in these wine composition changes were highlighted and most belong to nitrogen metabolism including the pathways of amino acid metabolism, such as tryptophan and phenylalanine. Thus, non-neutral interaction phenomena were highlighted. It should be noted that interaction mechanisms differ according to the strains involved. It is necessary to take into account these phenomena when associating two strains whose impacts cannot be defined only according to the population dynamics. Understanding these phenomena will allow to optimize the use of mixed S. cerevisiae starter cultures in oenology

    Interactome entre micro-organismes au cours la fermentation alcoolique des vins

    No full text
    The study of interactions between microorganisms is of major interest in oenology for various applications, including the modulation of the aromatic profile of wines. The interactions between Saccharomyces and non-Saccharomyces yeasts are widely described in the literature. On the contrary, interactions during alcoholic fermentation between S. cerevisiae strains, known for their technological properties in oenology, have been little studied.In this work, twelve strains of S. cerevisiae and their impact on wine were characterized in pure cultures using an integrative approach that combines microbiological, chemical, metabolomic and sensory approaches. An important intraspecific diversity was highlighted, leading to wines with specific chemical compositions and distinct sensory profiles. Four of these twelve strains were selected for their different metabolomic and sensory fingerprints in order to study the interactions between S. cerevisiae strains. To discriminate between strains of the same species using flow cytometry, tool of choice for real-time monitoring of growth kinetics, a gene coding for a fluorescent protein was integrated by CRISPR-Cas9 into the genome of one of these four selected strains. Although no phenotypic impact was observed, the integration of this gene had a significant effect on the metabolome and mainly the peptidome. 102 biomarkers specific to the modified strain or whose intensity was significantly modulated were revealed. The modified strain was integrated into co-cultures with each of the other three selected S. cerevisiae strains. These three co-cultures did not differ in population dynamics. On the other hand, their association to conduct alcoholic fermentation leads to wines with different chemical compositions than those from the associated pure cultures. Moreover, the wines from the co-cultures were remarkably different (metabolomically and sensorially) from the wine blends issued of the pure cultures. Esters, fatty acids and phenol families were affected by coculture regarding volatile compounds. High resolution mass spectrometry allowed to revealed thousands of coculture biomarkers. Metabolic pathways involved in these wine composition changes were highlighted and most belong to nitrogen metabolism including the pathways of amino acid metabolism, such as tryptophan and phenylalanine. Thus, non-neutral interaction phenomena were highlighted. It should be noted that interaction mechanisms differ according to the strains involved. It is necessary to take into account these phenomena when associating two strains whose impacts cannot be defined only according to the population dynamics. Understanding these phenomena will allow to optimize the use of mixed S. cerevisiae starter cultures in oenology.L'étude des interactions mises en jeu entre micro-organismes est d'intérêt majeur en œnologie pour diverses applications dont la modulation du profil aromatique des vins. Dans cette démarche, les interactions entre levures Saccharomyces et non-Saccharomyces sont largement décrites dans la littérature. Au contraire, les interactions au cours de la fermentation alcoolique entre souches de Saccharomyces cerevisiae, reconnue pour ses propriétés technologiques en œnologie, sont peu étudiées.Dans le cadre de ces travaux, douze souches de S. cerevisiae et leur impact sur le vin ont été caractérisés en culture pure selon une démarche intégrative qui combine des approches microbiologique, chimique, métabolomique et sensorielle. Une importante diversité intraspécifique a été mise en évidence conduisant à des vins de compositions chimiques spécifiques, aux profils sensoriels distincts. Quatre de ces douze souches ont été sélectionnées pour leurs différences d'empreintes métabolomique et sensorielle en vue de l'étude des interactions intervenant entre souches de S. cerevisiae. Afin de discriminer des souches d'une même espèce en cytométrie en flux, outil de choix pour suivre en temps réel une cinétique de croissance, un gène codant pour une protéine fluorescente a été intégré par CRISPR-Cas9 au sein du génome de l'une des quatre souches sélectionnées. Même si aucun impact phénotypique n'a été observé l'intégration de ce gène a eu un effet notable à l'échelle du métabolome et principalement du peptidome. 102 biomarqueurs spécifiques de la souche modifiée ou dont l'intensité a été significativement modulée ont été extraits. La souche modifiée a été intégrée au sein de co-cultures avec chacune des trois autres souches de S. cerevisiae sélectionnées. Ces trois co-cultures ne présentent pas de différence de dynamique de populations. En revanche, leur association pour mener la fermentation alcoolique conduit à des vins de compositions chimiques différentes de ceux issus des cultures pures associées. Par ailleurs, les vins issus des co-cultures se sont remarquablement distingués (métabolomique et sensoriel) des assemblages de vins des cultures pures correspondants. Au regard du volatilome, les familles des esters, des acides gras et des phénols ont été affectées par la co-culture.La spectrométrie de masse à haute résolution a permis de révéler des centaines de biomarqueurs spécifiques des cocultures. Les voies métaboliques impliquées dans ces changements de composition du vin ont été mises en évidence et la plupart appartiennent au métabolisme de l'azote incluant les voies du métabolisme des acides aminés, dont celui du tryptophane ou encore de la phénylalanine. Ainsi, des phénomènes d'interactions non neutres ont été mis en évidence. Il est à noter que les mécanismes diffèrent selon les souches en présence. Il est nécessaire de prendre en compte ces phénomènes lors de l'association de deux souches dont les impacts ne peuvent être définis uniquement selon les dynamiques de populations. La compréhension de ces phénomènes permettra d'optimiser le recours à l'utilisation de levains mixtes de S. cerevisiae en œnologie

    Yeast–Yeast Interactions: Mechanisms, Methodologies and Impact on Composition

    No full text
    International audienceDuring the winemaking process, alcoholic fermentation is carried out by a consortium of yeasts in which interactions occurs. The consequences of these interactions on the wine matrix have been widely described for several years with the aim of controlling the winemaking process as well as possible. In this review, we highlight the wide diversity of methodologies used to study these interactions, and their underlying mechanisms and consequences on the final wine composition and characteristics. The wide variety of matrix parameters, yeast couples, and culture conditions have led to contradictions between the results of the different studies considered. More recent aspects of modifications in the composition of the matrix are addressed through different approaches that have not been synthesized recently. Non-volatile and volatile metabolomics, as well as sensory analysis approaches are developed in this paper. The description of the matrix composition modification does not appear sufficient to explain interaction mechanisms, making it vital to take an integrated approach to draw definite conclusions on them

    A new case with Hermansky-Pudlak syndrome type 9, a rare cause of syndromic albinism with severe defect of platelets dense bodies

    No full text
    Hermansky-Pudlak syndrome (HPS) is a rare form of syndromic oculocutaneous albinism caused by disorders in lysosome-related organelles. Ten genes are associated with different forms of HPS. HPS type 9 (HPS-9) is caused by biallelic variants of BLOC1S6. To date, only three patients with HPS-9 have been reported. We described one patient presenting with ocular features of albinism. Genetic analysis revealed two compound heterozygous variants in the BLOC1S6 gene. Extended hematological studies confirmed the platelet storage pool disease with absence of dense granules and abnormal platelet aggregation. By reviewing the previous published cases we confirm the phenotype of HPS-9 patients. This patient is the only one described with dextrocardia and abnormal psychomotor development

    eGFP Gene Integration in HO: A Metabolomic Impact ?

    No full text
    International audienceIntegrating fluorescent genes including eGFP in the yeast genome is common practice for various applications, including cell visualization and population monitoring. The transformation of a commercial S. cerevisiae strain by integrating a cassette including a gene encoding an EGFP protein in the HO gene was carried out using CRISPR-Cas9 technology. Although this type of integration is often used and described as neutral at the phenotypic level of the cell, we have highlighted that under alcoholic fermentation (in a Chardonnay must), it has an impact on the exometabolome. We observed 41 and 82 unique biomarkers for the S3 and S3GFP strains, respectively, as well as 28 biomarkers whose concentrations varied significantly between the wild-type and the modified strains. These biomarkers were mainly found to correspond to peptides. Despite similar phenotypic growth and fermentation parameters, high-resolution mass spectrometry allowed us to demonstrate, for the first time, that the peptidome is modified when integrating this cassette in the HO gene
    corecore