483 research outputs found
Ground State of the Easy-Axis Rare-Earth Kagom\'e Langasite PrGaSiO
We report muon spin relaxation (SR) and Ga nuclear quadrupolar
resonance (NQR) local-probe investigations of the kagom\'e compound
PrGaSiO. Small quasi-static random internal fields develop below
40 K and persist down to our base temperature of 21 mK. They originate from
hyperfine-enhanced Pr nuclear magnetism which requires a non-magnetic
Pr crystal-field (CF) ground state. Besides, we observe a broad maximum
of the relaxation rate at K which we attribute to the population of
the first excited magnetic CF level. Our results yield a Van-Vleck paramagnet
picture, at variance with the formerly proposed spin-liquid ground state.Comment: minor change
Internal-strain mediated coupling between polar Bi and magnetic Mn ions in the defect-free quadruple-perovskite BiMnMnO
By means of neutron powder diffraction, we investigated the effect of the
polar Bi ion on the magnetic ordering of the Mn ions in
BiMnMnO, the counterpart with \textit{quadruple} perovskite
structure of the \textit{simple} perovskite BiMnO. The data are consistent
with a \textit{noncentrosymmetric} spacegroup which contrasts the
\textit{centrosymmetric} one previously reported for the isovalent and
isomorphic compound LaMnMnO, which gives evidence of a
Bi-induced polarization of the lattice. At low temperature, the two
Mn sublattices of the and sites order antiferromagnetically
(AFM) in an independent manner at 25 and 55 K, similarly to the case of
LaMnMnO. However, both magnetic structures of
BiMnMnO radically differ from those of LaMnMnO.
In BiMnMnO the moments of the sites form
an anti-body AFM structure, whilst the moments \textbf{M} of the
sites result from a large and \textit{uniform} modulation along the b-axis of the moments \textbf{M} in the
-plane. The modulation is strikingly correlated with the displacements of
the Mn ions induced by the Bi ions. Our analysis unveils a strong
magnetoelastic coupling between the internal strain created by the Bi
ions and the moment of the Mn ions in the sites. This is ascribed to
the high symmetry of the oxygen sites and to the absence of oxygen defects, two
characteristics of quadruple perovskites not found in simple ones, which
prevent the release of the Bi-induced strain through distortions or
disorder. This demonstrates the possibility of a large magnetoelectric coupling
in proper ferroelectrics and suggests a novel concept of internal strain
engineering for multiferroics design.Comment: 9 pages, 7 figures, 5 table
Easy-Axis Kagom\'e Antiferromagnet: Local-Probe Study of NdGaSiO
We report a local-probe investigation of the magnetically anisotropic
kagom\'e compound NdGaSiO. Our zero-field SR results
provide a direct evidence of a fluctuating collective paramagnetic state down
to 60 mK, supported by a wipe-out of the Ga nuclear magnetic resonance (NMR)
signal below 25 K. At 60 mK a dynamics crossover to a much more static state is
observed by SR in magnetic fields above 0.5 T. Accordingly, the NMR signal
is recovered at low above a threshold field, revealing a rapid temperature
and field variation of the magnetic fluctuations.Comment: 4 pages, 4 figure
Lattice Distortion and Magnetism of 3d- Perovskite Oxides
Several puzzling aspects of interplay of the experimental lattice distortion
and the the magnetic properties of four narrow -band perovskite oxides
(YTiO, LaTiO, YVO, and LaVO) are clarified using results of
first-principles electronic structure calculations. First, we derive parameters
of the effective Hubbard-type Hamiltonian for the isolated bands using
newly developed downfolding method for the kinetic-energy part and a hybrid
approach, based on the combination of the random-phase approximation and the
constraint local-density approximation, for the screened Coulomb interaction
part. Then, we solve the obtained Hamiltonian using a number of techniques,
including the mean-field Hartree-Fock (HF) approximation, the second-order
perturbation theory for the correlation energy, and a variational superexchange
theory. Even though the crystal-field splitting is not particularly large to
quench the orbital degrees of freedom, the crystal distortion imposes a severe
constraint on the form of the possible orbital states, which favor the
formation of the experimentally observed magnetic structures in YTiO,
YVO_, and LaVO even at the HF level. Beyond the HF approximation, the
correlations effects systematically improve the agreement with the experimental
data. Using the same type of approximations we could not reproduce the correct
magnetic ground state of LaTiO. However, we expect that the situation may
change by systematically improving the level of approximations for dealing with
the correlation effects.Comment: 30 pages, 17 figures, 8 tables, high-quality figures are available
via e-mai
Electronic and structural properties of superconducting MgB, CaSi and related compounds
We report a detailed study of the electronic and structural properties of the
39K superconductor \mgbtwo and of several related systems of the same family,
namely \mgalbtwo, \bebtwo, \casitwo and \cabesi. Our calculations, which
include zone-center phonon frequencies and transport properties, are performed
within the local density approximation to the density functional theory, using
the full-potential linearized augmented plane wave (FLAPW) and the
norm-conserving pseudopotential methods. Our results indicate essentially
three-dimensional properties for these compounds; however, strongly
two-dimensional -bonding bands contribute significantly at the Fermi
level. Similarities and differences between \mgbtwo and \bebtwo (whose
superconducting properties have not been yet investigated) are analyzed in
detail. Our calculations for \mgalbtwo show that metal substitution cannot be
fully described in a rigid band model. \casitwo is studied as a function of
pressure, and Be substitution in the Si planes leads to a stable compound
similar in many aspects to diborides.Comment: Revised version, Phys.Rev.B in pres
Hidden magnetic frustration by quantum relaxation in anisotropic Nd-langasite
The static and dynamic magnetic properties of the NdGaSiO
compound, which appears as the first materialization of a rare-earth
kagome-type lattice, were re-examined, owing to contradictory results in the
previous studies. Neutron scattering, magnetization and specific heat
measurements were performed and analyzed, in particular by fully taking account
of the crystal electric field effects on the Nd ions. One of the novel
findings is that the peculiar temperature independent spin dynamics observed
below 10 K expresses single-ion quantum processes. This would short-circuit the
frustration induced cooperative dynamics, which would emerge only at very low
temperature
Gain-of-Function Mutation in Filamin A Potentiates Platelet Integrin αβ Activation
OBJECTIVE: Dominant mutations of the X-linked filamin A () gene are responsible for filaminopathies A, which are rare disorders including brain periventricular nodular heterotopia, congenital intestinal pseudo-obstruction, cardiac valves or skeleton malformations, and often macrothrombocytopenia.
APPROACH AND RESULTS: We studied a male patient with periventricular nodular heterotopia and congenital intestinal pseudo-obstruction, his unique X-linked allele carrying a stop codon mutation resulting in a 100-amino acid-long FLNa C-terminal extension (NP_001447.2: ). Platelet counts were normal, with few enlarged platelets. FLNa was detectable in all platelets but at 30% of control levels. Surprisingly, all platelet functions were significantly upregulated, including platelet aggregation and secretion, as induced by ADP, collagen, or von Willebrand factor in the presence of ristocetin, as well as thrombus formation in blood flow on a collagen or on a von Willebrand factor matrix. Most importantly, patient platelets stimulated with ADP exhibited a marked increase in αβ integrin activation and a parallel increase in talin recruitment to β, contrasting with normal Rap1 activation. These results are consistent with the mutant FLNa affecting the last step of αβ activation. Overexpression of mutant FLNa in the HEL megakaryocytic cell line correlated with an increase (compared with wild-type FLNa) in PMA-induced fibrinogen binding to and in talin and kindlin-3 recruitment by αβ.
CONCLUSIONS: Altogether, our results are consistent with a less binding of mutant FLNa to β and the facilitated recruitment of talin by β on platelet stimulation, explaining the increased αβ activation and the ensuing gain-of-platelet functions
Improving mealtimes for paediatric intensive care children and families : a quality improvement initiative
Introduction: Many critically ill children can be fed orally at some point during their paediatric intensive care (PICU) stay, but reduced appetite and other factors may impact on their intake. At home, oral feeding is usually delivered by parents; so involving parents more actively during the mealtimes in PICU may contribute to improved patient/family satisfaction. We aimed to assess the impact of a new “room service” initiative involving parents on mealtime quality and on both family and healthcare professional (HCP) satisfaction.
Methods: A prospective, single centre, before and after intervention study was designed, as part of a PICU quality of care improvement program in 2013-2016. Two questionnaires assessing oral nutrition practices and family/HCP overall satisfaction were disseminated among the parents of critically ill children capable of oral feeding during their PICU admission and among the whole PICU healthcare professional team (nurses, nurse assistants, and medical doctors). Categorical variables were compared using the chi-square test and Likert scales were compared between groups with the Mann-Whitney-Wilcoxon test.
Results: the pre-intervention surveys were completed by 97/130 (75%) HCPs and 52 families, and the post-intervention surveys by 74/130 (57%) HCPs and 54 families. After the intervention, a marked improvement was shown for the overall quality of meal service rating by both HCPs and families (medians and IQR: 5 (5-7) to 7 (7-8) and 6 (6-8) to 8 (7-9) respectively; p<0.01) and also: for the parents’ involvement; in children’s, families’ and healthcare professional satisfaction; in meal dedicated facilities and equipment; and in perception that oral nutrition is an important aspect of PICU care.
Conclusions: Implementation of an improved “room service” initiative in the PICU was feasible and improved the perceived quality of care and satisfaction around oral feeding. This family centred care initiative can be integrated in an overall quality improvement strategy
Modeling of complex oxide materials from the first principles: systematic applications to vanadates RVO3 with distorted perovskite structure
"Realistic modeling" is a new direction of electronic structure calculations,
where the main emphasis is made on the construction of some effective
low-energy model entirely within a first-principle framework. Ideally, it is a
model in form, but with all the parameters derived rigorously, on the basis of
first-principles electronic structure calculations. The method is especially
suit for transition-metal oxides and other strongly correlated systems, whose
electronic and magnetic properties are predetermined by the behavior of some
limited number of states located near the Fermi level. After reviewing general
ideas of realistic modeling, we will illustrate abilities of this approach on
the wide series of vanadates RVO3 (R= La, Ce, Pr, Nd, Sm, Gd, Tb, Yb, and Y)
with distorted perovskite structure. Particular attention will be paid to
computational tools, which can be used for microscopic analysis of different
spin and orbital states in the partially filled t2g-band. We will explicitly
show how the lifting of the orbital degeneracy by the monoclinic distortion
stabilizes C-type antiferromagnetic (AFM) state, which can be further
transformed to the G-type AFM state by changing the crystal distortion from
monoclinic to orthorhombic one. Two microscopic mechanisms of such a
stabilization, associated with the one-electron crystal field and electron
correlation interactions, are discussed. The flexibility of the orbital degrees
of freedom is analyzed in terms of the magnetic-state dependence of interatomic
magnetic interactions.Comment: 23 pages, 13 figure
- …