528 research outputs found
Decentralized Constraint Satisfaction
We show that several important resource allocation problems in wireless
networks fit within the common framework of Constraint Satisfaction Problems
(CSPs). Inspired by the requirements of these applications, where variables are
located at distinct network devices that may not be able to communicate but may
interfere, we define natural criteria that a CSP solver must possess in order
to be practical. We term these algorithms decentralized CSP solvers. The best
known CSP solvers were designed for centralized problems and do not meet these
criteria. We introduce a stochastic decentralized CSP solver and prove that it
will find a solution in almost surely finite time, should one exist, also
showing it has many practically desirable properties. We benchmark the
algorithm's performance on a well-studied class of CSPs, random k-SAT,
illustrating that the time the algorithm takes to find a satisfying assignment
is competitive with stochastic centralized solvers on problems with order a
thousand variables despite its decentralized nature. We demonstrate the
solver's practical utility for the problems that motivated its introduction by
using it to find a non-interfering channel allocation for a network formed from
data from downtown Manhattan
Matchings on infinite graphs
Elek and Lippner (2010) showed that the convergence of a sequence of
bounded-degree graphs implies the existence of a limit for the proportion of
vertices covered by a maximum matching. We provide a characterization of the
limiting parameter via a local recursion defined directly on the limit of the
graph sequence. Interestingly, the recursion may admit multiple solutions,
implying non-trivial long-range dependencies between the covered vertices. We
overcome this lack of correlation decay by introducing a perturbative parameter
(temperature), which we let progressively go to zero. This allows us to
uniquely identify the correct solution. In the important case where the graph
limit is a unimodular Galton-Watson tree, the recursion simplifies into a
distributional equation that can be solved explicitly, leading to a new
asymptotic formula that considerably extends the well-known one by Karp and
Sipser for Erd\"os-R\'enyi random graphs.Comment: 23 page
Spectrum of non-Hermitian heavy tailed random matrices
Let (X_{jk})_{j,k>=1} be i.i.d. complex random variables such that |X_{jk}|
is in the domain of attraction of an alpha-stable law, with 0< alpha <2. Our
main result is a heavy tailed counterpart of Girko's circular law. Namely,
under some additional smoothness assumptions on the law of X_{jk}, we prove
that there exists a deterministic sequence a_n ~ n^{1/alpha} and a probability
measure mu_alpha on C depending only on alpha such that with probability one,
the empirical distribution of the eigenvalues of the rescaled matrix a_n^{-1}
(X_{jk})_{1<=j,k<=n} converges weakly to mu_alpha as n tends to infinity. Our
approach combines Aldous & Steele's objective method with Girko's Hermitization
using logarithmic potentials. The underlying limiting object is defined on a
bipartized version of Aldous' Poisson Weighted Infinite Tree. Recursive
relations on the tree provide some properties of mu_alpha. In contrast with the
Hermitian case, we find that mu_alpha is not heavy tailed.Comment: Expanded version of a paper published in Communications in
Mathematical Physics 307, 513-560 (2011
Parentage of grapevine rootstock âFercalâ finally elucidated
Using a set of 20 microsatellite markers, âB.C. n°1Bâ (mother) and â31 Richterâ (father) were demonstrated to be the true parents of âFercalâ rootstock. â333 Ecole de Montpellierâ was definitively excluded as the putative father. âB.C. n°1Aâ and âB.C. n°1Bâ were shown to be distinct genotypes. âUgni blancâ, and not âColombardâ, was discovered to be the Vitis vinifera father of âB.C. n°1Bâ.
Stability Analysis of Frame Slotted Aloha Protocol
Frame Slotted Aloha (FSA) protocol has been widely applied in Radio Frequency
Identification (RFID) systems as the de facto standard in tag identification.
However, very limited work has been done on the stability of FSA despite its
fundamental importance both on the theoretical characterisation of FSA
performance and its effective operation in practical systems. In order to
bridge this gap, we devote this paper to investigating the stability properties
of FSA by focusing on two physical layer models of practical importance, the
models with single packet reception and multipacket reception capabilities.
Technically, we model the FSA system backlog as a Markov chain with its states
being backlog size at the beginning of each frame. The objective is to analyze
the ergodicity of the Markov chain and demonstrate its properties in different
regions, particularly the instability region. By employing drift analysis, we
obtain the closed-form conditions for the stability of FSA and show that the
stability region is maximised when the frame length equals the backlog size in
the single packet reception model and when the ratio of the backlog size to
frame length equals in order of magnitude the maximum multipacket reception
capacity in the multipacket reception model. Furthermore, to characterise
system behavior in the instability region, we mathematically demonstrate the
existence of transience of the backlog Markov chain.Comment: 14 pages, submitted to IEEE Transaction on Information Theor
Spectral density of random graphs with topological constraints
The spectral density of random graphs with topological constraints is
analysed using the replica method. We consider graph ensembles featuring
generalised degree-degree correlations, as well as those with a community
structure. In each case an exact solution is found for the spectral density in
the form of consistency equations depending on the statistical properties of
the graph ensemble in question. We highlight the effect of these topological
constraints on the resulting spectral density.Comment: 24 pages, 6 figure
A real quaternion spherical ensemble of random matrices
One can identify a tripartite classification of random matrix ensembles into
geometrical universality classes corresponding to the plane, the sphere and the
anti-sphere. The plane is identified with Ginibre-type (iid) matrices and the
anti-sphere with truncations of unitary matrices. This paper focusses on an
ensemble corresponding to the sphere: matrices of the form \bY= \bA^{-1} \bB,
where \bA and \bB are independent matrices with iid standard
Gaussian real quaternion entries. By applying techniques similar to those used
for the analogous complex and real spherical ensembles, the eigenvalue jpdf and
correlation functions are calculated. This completes the exploration of
spherical matrices using the traditional Dyson indices .
We find that the eigenvalue density (after stereographic projection onto the
sphere) has a depletion of eigenvalues along a ring corresponding to the real
axis, with reflective symmetry about this ring. However, in the limit of large
matrix dimension, this eigenvalue density approaches that of the corresponding
complex ensemble, a density which is uniform on the sphere. This result is in
keeping with the spherical law (analogous to the circular law for iid
matrices), which states that for matrices having the spherical structure \bY=
\bA^{-1} \bB, where \bA and \bB are independent, iid matrices the
(stereographically projected) eigenvalue density tends to uniformity on the
sphere.Comment: 25 pages, 3 figures. Added another citation in version
- âŠ