42 research outputs found
Replication of TCF4 through Association and Linkage Studies in Late-Onset Fuchs Endothelial Corneal Dystrophy
Fuchs endothelial corneal dystrophy (FECD) is a common, late-onset disorder of
the corneal endothelium. Although progress has been made in understanding the
genetic basis of FECD by studying large families in which the phenotype is
transmitted in an autosomal dominant fashion, a recently reported genome-wide
association study identified common alleles at a locus on chromosome 18 near
TCF4 which confer susceptibility to FECD. Here, we report
the findings of our independent validation study for TCF4 using
the largest FECD dataset to date (450 FECD cases and 340 normal controls).
Logistic regression with sex as a covariate was performed for three genetic
models: dominant (DOM), additive (ADD), and recessive (REC). We found
significant association with rs613872, the target marker reported by Baratz
et al.(2010), for all three genetic models (DOM:
P = 9.33×10−35;
ADD:
P = 7.48×10−30;
REC:
P = 5.27×10−6).
To strengthen the association study, we also conducted a genome-wide linkage
scan on 64 multiplex families, composed primarily of affected sibling pairs
(ASPs), using both parametric and non-parametric two-point and multipoint
analyses. The most significant linkage region localizes to chromosome 18 from
69.94cM to 85.29cM, with a peak multipoint
HLOD = 2.5 at rs1145315 (75.58cM) under the DOM
model, mapping 1.5 Mb proximal to rs613872. In summary, our study presents
evidence to support the role of the intronic TCF4 single
nucleotide polymorphism rs613872 in late-onset FECD through both association and
linkage studies
Cell cycle dysregulation in pituitary oncogenesis.
The cell cycle is the process by which cells grow, replicate their genome and divide. The cell cycle control system is a cyclically-operating biochemical device constructed from a set of interacting proteins that induce and coordinate proper progression through the cycle, and includes cyclins, cyclin-dependent kinases (CDK) and their inhibitors (CDKI). There are mainly two families of CDKI, the INK family (INK4a/p16; INK4b/p15; INK4c/p18 and INK4d/p19) and the WAF/KIP family (WAF1/p21; KIP1/p27; KIP2/p57). Progression through the cell cycle is mainly dependent on fluctuations in the concentration of cyclins and CDKI achieved through the programmed degradation of these proteins by proteolysis within the ubiquitin-proteasome system. There is also a transcriptional regulation of cyclin expression, probably dependent on CDK phosphorylation. The p53 family--p53, p63 and p73--function as transcription factors that play a major role in regulating the response of mammalian cells to stressors and damage, in part through the transcriptional activation of genes involved in cell cycle control (e.g. p21), DNA repair, senescence, angiogenesis and apoptosis. Essential for the maintenance of euploidy during mitosis is human securin, identical to the product of the pituitary tumour-transforming gene (PTTG). Loss of regulation at the G1/S transition appears to be a common event among virtually all types of human tumours. Aberrations of one or more components of the pRb/p16/cyclin D1/CDK4 pathway seem to be a frequent event (80%) in pituitary tumours. The role of p27 is rather that of a haploinsufficient gene. p27-/- mice show an increased growth rate, due to increased cellularity, testicular and ovarian cell hyperplasia and infertility, and hyperplasia of the pituitary intermediate lobe with nearly 100% mortality caused by such a benign pituitary tumour. Although the p27 gene was not found to be mutated in human pituitary tumours and its mRNA expression was similar in tumour samples in comparison with normal pituitaries, the load of p27 protein expression in corticotroph adenomas and pituitary carcinomas was shown to be much lower than those in normal pituitary tissue or other types of pituitary adenoma, suggesting that post-translational processing of p27 accelerates its removal from the nucleus. In respect to p27 degradation and its cellular compartmentalization, several pathways have been explored. Malignant tumours are associated with increased nuclear immunostaining for Jun-activation binding protein-1 (Jab1) which is responsible for phosphorylated p27 export from the nucleus. Corticotrophinomas are characterized by massively increased phosphorylation of p27 on Thr187, but are not associated with changes in Jab1. Macrophage inhibitory factor (MIF), which binds and inactivates Jab1, was noted to be over-expressed in tumours with abundant Jab1, suggesting that it may be part of a compensatory mechanism to moderate Jab1 activity. Proteasomal degradation of p27 requires its ubiquitylation by the SCF ubiquitin ligase, with specific addressing by the F-box protein Skp2 and its co-factor Cks1. Pituitary tumours with high p27 protein expression showed significantly less Skp2 expression than samples with low p27 immunostaining, suggesting that increased Skp2 could play at least a part in this process. No difference was observed in Cks1 mRNA levels between normal pituitaries and pituitary adenomas. The present data suggest that inhibition of growth and tumour development is sensitive not only to the absolute levels of p27 protein, but also to its cellular compartmentalization. Very recent findings from our group have established up-regulation of the serine-threonine kinase Akt in pituitary tumours compared to normal pituitary, which may cause phosphorylation of p27 on Thr157 and cytoplasmic retention of p27. PTTG protein is highly expressed in various human tumours, including pituitary tumours. While its mRNA levels are low in normal pituitary, increases in PTTG transcripts from more than 50% to more than 10-fold were recorded in the majority of a series of pituitary adenomas. Control of the cell cycle is a vital part of the cell's replication machinery. Disruption of this process is commonly seen in pituitary tumours and we are now beginning to identify regulatory elements which are likely to play a major role in pituitary oncogenesis
Fuchs Endothelial Corneal Dystrophy in Patients With Myotonic Dystrophy
PURPOSE: To report four cases of Fuchs endothelial corneal dystrophy (FECD) in patients with an established diagnosis of myotonic dystrophy (DM) and suggest a mechanism for their association based on the known molecular genetics and potential pathophysiological parallels of DM and FECD. METHODS: We reviewed all available medical records and pathology slides for the four reported cases from the Department of Ophthalmology at Oregon Health & Science University’s Casey Eye Institute as well as Devers Eye Institute at Legacy Good Samaritan Medical Center in Portland, OR. RESULTS: Four patients were found to have myotonic dystrophy as well as bilateral corneal guttae, consistent with the diagnosis of FECD. All of the identified patients were female and between the ages of 34–63, and two of the patients were related (mother and daughter). The corneal specimens from two of the four patients who had undergone corneal transplant were pathologically confirmed to be consistent with FECD. CONCLUSION: To our knowledge, FECD has not been previously reported in association with DM. Because both diseases are somewhat prevalent in the U.S., it is possible that their coexistence is merely a coincidence in these patients. However, recent studies into the pathogenesis of each disease have shown more parallels between FECD and DM, suggesting the possibility of a non-coincidental association. Potential mutual pathogenic mechanisms may involve altered protein expression causing deregulation of ion homeostasis, an unstable intronic trinucleotide repeat expansion, or activation of the unfolded protein response and oxidative stress pathways
Retrospective comparative analysis of intraocular lens calculation formulas after hyperopic refractive surgery.
PURPOSE:To compare the intraocular lens calculation formulas and evaluate postoperative refractive results of patients with previous hyperopic corneal refractive surgery. DESIGN:Retrospective, comparative, observational study. SETTING:Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA. METHODS:Clinical charts and optical biometric data of 39 eyes from 24 consecutive patients diagnosed with previous hyperopic laser vision correction and cataract surgery were reviewed and analyzed. The Intraocular lens (IOL) power calculation using the Holladay 2 formula (Lenstar) and the American Society of Cataract and Refractive Surgery (ASCRS) Post-Refractive IOL Calculator (version 4.9, 2017) were compared to the actual manifest refractive spherical equivalent (MRSE) following cataract surgery. No pre-Lasik / PRK or post-Lasik / PRK information was used in any of the calculations. The IOL prediction error, the mean IOL prediction error, the median absolute refractive prediction error, and the percentages of eyes within ±0.50 diopter (D) and ±1.00 D of the predicted refraction were calculated. RESULTS:The Holladay 2 formula produced a mean arithmetic IOL prediction error significantly different from zero (P = 0.003). Surprisingly, the mean arithmetic IOL prediction errors generated by Shammas, Haigis-L and Barret True K No History formulas were not significantly different from zero (P = 0.14, P = 0.49, P = 0.81, respectively).There were no significant differences in the median absolute refractive prediction error or percentage of eyes within ± 0.50 D or ± 1.00 D of the predicted refraction between formulas or methods. CONCLUSION:In eyes with previous hyperopic LASIK/PRK and no prior data, there were no significant differences in the accuracy of IOL power calculation between the Holladay 2 formula and the ASCRS Post-refractive IOL calculator
Sequence analysis of the PRKAR1A gene in sporadic somatotroph and other pituitary tumours.
OBJECTIVE: Carney complex (CNC) is an autosomal dominant multiple neoplasia syndrome featuring cardiac, endocrine, cutaneous and neural tumours, as well as a variety of pigmented lesions of the skin and mucosa. Pituitary GH-secreting tumours are found in approximately 10% of patients with CNC. One of the genes responsible for CNC, the PRKAR1A gene located on human chromosome 17q22-24, has recently been cloned. This represents a putative tumour suppressor gene, coding for the type 1alpha regulatory subunit of protein kinase A (PKA), which is found to be mutated in approximately half of the patients with CNC. However, it is currently unclear as to whether similar mutations occur in sporadic pituitary tumours. We have therefore investigated a series of GH-secreting and other pituitary tumours for sequence abnormalities in the PRKAR1A gene. The mRNA produced by the PRKAR1A undergoes decay if it codes for a truncated protein; we therefore also determined PRKAR1A mRNA levels in the tumours, and compared them with known mutant PRKAR1A-carrying lymphocyte samples. METHODS: We extracted RNA from a series of pituitary tumours, reverse transcribed it to cDNA, and directly sequenced the PRKAR1A coding sequence in 17 GH-secreting, three prolactin-secreting, three ACTH-secreting, one FSH-secreting and 10 nonfunctioning pituitary tumours. Lymphocyte and tumour tissue RNA from two patients with CNC was used as positive controls. Using duplex polymerase chain reaction (PCR) with the PRKAR1A and the "housekeeping" gene GAPDH, we determined the relative expression of the PRKAR1A gene in the unknown as well as in the positive control samples. RESULTS AND CONCLUSION: No mutations were found in any of the exons sequenced. Relative mRNA expression was not decreased in any of the sporadic pituitary tumour samples. The present data thus do not suggest a major role for the PRKAR1A tumour suppressor gene in sporadic GH-secreting or other pituitary tumours