31 research outputs found

    Sub-15nm Silicon Lines Fabrication via PS-b-PDMS Block Copolymer Lithography

    Get PDF
    This paper describes the fabrication of nanodimensioned silicon structures on silicon wafers from thin films of a poly(styrene)-block-poly(dimethylsiloxane) (PS-b-PDMS) block copolymer (BCP) precursor self-assembling into cylindrical morphology in the bulk. The structure alignment of the PS-b-PDMS (33 k–17 k) was conditioned by applying solvent and solvothermal annealing techniques. BCP nanopatterns formed after the annealing process have been confirmed by scanning electron microscope (SEM) after removal of upper PDMS wetting layer by plasma etching. Silicon nanostructures were obtained by subsequent plasma etching to the underlying substrate by an anisotropic dry etching process. SEM images reveal the formation of silicon nanostructures, notably of sub-15 nm dimensions

    Rapid, Brushless Self-assembly of a PS-b-PDMS Block Copolymer for Nanolithography

    Get PDF
    AbstractBlock copolymers (BCP) are highly promising self-assembling precursors for scalable nanolithography. Very regular BCP nanopatterns can be used as on-chip etch masks. The first step in the processing of BCP thin films is usually the chemical modification of the substrate surface, typically by grafting of a brush layer that renders the surface energy neutral relative to the constituent blocks. We provide here a first study on rapid, low temperature self-assembly of PS-b-PDMS (polystyrene-block-polydimethylsiloxane) on silicon substrates without a brush layer. We show that it forms line and antidot patterns after short solvo-thermal annealing. Unlike previous reports on this system, low temperature and short annealing time provide self-assembly in homogeneous thin films covering large substrate areas. This on-chip mask was then used for pattern transfer to the underlying silicon substrate. SEM (scanning electron microscope) images reveal silicon nanowires relative to the PDMS patterns of the BCP mask

    A highly efficient sensor platform using simply manufactured nanodot patterned substrates

    Get PDF
    Block copolymer (BCP) self-assembly is a low-cost means to nanopattern surfaces. Here, we use these nanopatterns to directly print arrays of nanodots onto a conducting substrate (Indium Tin Oxide (ITO) coated glass) for application as an electrochemical sensor for ethanol (EtOH) and hydrogen peroxide (H\u1d7e4O\u1d7e4) detection. The work demonstrates that BCP systems can be used as a highly efficient, flexible methodology for creating functional surfaces of materials. Highly dense iron oxide nanodots arrays that mimicked the original BCP pattern were prepared by an ‘insitu’ BCP inclusion methodology using poly(styrene)-\u1d623\u1d62d\u1d630\u1d624\u1d62c-poly(ethylene oxide) (PS-\u1d623-PEO). The electrochemical behaviour of these densely packed arrays of iron oxide nanodots fabricated by two different molecular weight PS-\u1d623-PEO systems was studied. The dual detection of EtOH and (H\u1d7e4O\u1d7e4) was clearly observed. The as-prepared nanodots have good long term thermal and chemical stability at the substrate and demonstrate promising electrocatalytic performance

    Formation of sub-7 nm feature size PS-b-P4VP block copolymer structures by solvent vapour process

    Get PDF
    The nanometer range structure produced by thin films of diblock copolymers makes them a great of interest as templates for the microelectronics industry. We investigated the effect of annealing solvents and/or mixture of the solvents in case of symmetric Poly (styrene-block-4vinylpyridine) (PS-b-P4VP) diblock copolymer to get the desired line patterns. In this paper, we used different molecular weights PS-b-P4VP to demonstrate the scalability of such high χ BCP system which requires precise fine-tuning of interfacial energies achieved by surface treatment and that improves the wetting property, ordering, and minimizes defect densities. Bare Silicon Substrates were also modified with polystyrene brush and ethylene glycol self-assembled monolayer in a simple quick reproducible way. Also, a novel and simple in situ hard mask technique was used to generate sub-7nm Iron oxide nanowires with a high aspect ratio on Silicon substrate, which can be used to develop silicon nanowires post pattern transfer

    The morphology of ordered block copolymer patterns as probed by high resolution imaging

    Get PDF
    The microphase separation of block copolymer (BCP) thin films can afford a simple and cost-effective means to studying nanopattern surfaces, and especially the fabrication of nanocircuitry. However, because of complex interface effects and other complications, their 3D morphology, which is often critical for application, can be more complex than first thought. Here, we describe how emerging microscopic methods may be used to study complex BCP patterns and reveal their rich detail. These methods include helium ion microscopy (HIM) and high resolution x-section transmission electron microscopy (XTEM), and complement conventional secondary electron and atomic force microscopies (SEM and TEM). These techniques reveal that these structures are quite different to what might be expected. We illustrate the advances in the understanding of BCP thin film morphology in several systems, which result from this characterization. The systems described include symmetric, lamellar forming polystyrene-b-polymethylmethacrylate (PS-b-PMMA), cylinder forming polystyrene-b-polydimethylsiloxane (PS-b-PDMS), as well as lamellar and cylinder forming patterns of polystyrene-b-polyethylene oxide (PS-b-PEO) and polystyrene-b-poly-4-vinylpyridine (PS-b-P4VP). Each of these systems exhibits more complex arrangements than might be first thought. Finding and developing techniques whereby complex morphologies, particularly at very small dimensions, can be determined is critical to the practical use of these materials in many applications. The importance of quantifying these complex morphologies has implications for their use in integrated circuit manufacture, where they are being explored as alternative pattern forming methods to conventional UV lithography

    High quality sub-10 nm graphene nanoribbons by on-chip PS-b-PDMS block copolymer lithography

    Get PDF
    “High quality sub-10 nm graphene nanoribbons by on-chip PS-b-PDMS block copolymer lithography”, SEM image of sub-10 nm graphene nanoribbons fabricated using a brushless lamellar PS-b-PDMS (5k–5.5k) block copolymer and its Raman spectra.</p

    Carbon nanocages as heavy metal ion adsorbents

    Get PDF
    Heavy metal ion contamination in drinking water poses a major risk to human health, whilst contamination in wastewater streams can cause damage to the wider environment. In this study carbon nanocages, synthesised using a supercritical fluid deposition method, were examined as adsorbents of Pb2+ ions from aqueous solutions. Through careful selection of the catalyst and the carbon deposition temperature and pressure, high yields of nanocages with surface areas up to 1175 m2 g−1 were synthesised. These high surface area materials were subsequently tested for their ability to absorb Pb2+ ions, as a function of pH, from simulated wastewater. The nanocages were found to be effective at removing the Pb2+ ions at levels of 11.1 mg g−1, compared to 7.6 mg g−1 for commercially available activated carbon. The kinetics of metal ion adsorption by the nanocages and activated carbon can be described by a pseudo-second-order kinetics model, with a rate coefficient (k2) of 4.8 × 102 g mg−1 min−1

    Chemical Interactions and Their Role in the Microphase Separation of Block Copolymer Thin Films

    Get PDF
    The thermodynamics of self-assembling systems are discussed in terms of the chemical interactions and the intermolecular forces between species. It is clear that there are both theoretical and practical limitations on the dimensions and the structural regularity of these systems. These considerations are made with reference to the microphase separation that occurs in block copolymer (BCP) systems. BCP systems self-assemble via a thermodynamic driven process where chemical dis-affinity between the blocks driving them part is balanced by a restorative force deriving from the chemical bond between the blocks. These systems are attracting much interest because of their possible role in nanoelectronic fabrication. This form of self-assembly can obtain highly regular nanopatterns in certain circumstances where the orientation and alignment of chemically distinct blocks can be guided through molecular interactions between the polymer and the surrounding interfaces. However, for this to be possible, great care must be taken to properly engineer the interactions between the surfaces and the polymer blocks. The optimum methods of structure directing are chemical pre-patterning (defining regions on the substrate of different chemistry) and graphoepitaxy (topographical alignment) but both centre on generating alignment through favourable chemical interactions. As in all self-assembling systems, the problems of defect formation must be considered and the origin of defects in these systems is explored. It is argued that in these nanostructures equilibrium defects are relatively few and largely originate from kinetic effects arising during film growth. Many defects also arise from the confinement of the systems when they are ‘directed’ by topography. The potential applications of these materials in electronics are discussed

    Nanopatterning via Self-Assembly of a Lamellar-Forming Polystyrene-block-Poly(dimethylsiloxane) Diblock Copolymer on Topographical Substrates Fabricated by Nanoimprint Lithography

    No full text
    The self-assembly of a lamellar-forming polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS) diblock copolymer (DBCP) was studied herein for surface nanopatterning. The DBCP was synthesized by sequential living anionic polymerization of styrene and hexamethylcyclotrisiloxane (D3). The number average molecular weight (Mn), polydispersity index (Mw/Mn) and PS volume fraction (φps) of the DBCP were MnPS = 23.0 kg mol−1, MnPDMS = 15.0 kg mol−1, Mw/Mn = 1.06 and φps = 0.6. Thin films of the DBCP were cast and solvent annealed on topographically patterned polyhedral oligomeric silsesquioxane (POSS) substrates. The lamellae repeat distance or pitch (λL) and the width of the PDMS features (dL) are ~35 nm and ~17 nm, respectively, as determined by SEM. The chemistry of the POSS substrates was tuned, and the effects on the self-assembly of the DBCP noted. The PDMS nanopatterns were used as etching mask in order to transfer the DBCP pattern to underlying silicon substrate by a complex plasma etch process yielding sub-15 nm silicon features
    corecore