69 research outputs found

    Peri-Implant Behavior of Sloped Shoulder Dental Implants Used for All-On-Four Protocols: An Histomorphometric Analysis in Dogs

    Get PDF
    Abstract: The aim of this study was to evaluate the soft tissue thickness and marginal bone loss around dental implants with sloped micro-threaded shoulder (30° angle) in comparing with conventional design, inserted 30° degrees angulated in post extraction sockets and immediate loaded with temporary prosthesis simulating the all-on-four protocol. Materials and Methods: Six fox hound dogs received forty-eight post extraction dental implants with the different diameter and length (Medentika, Germany), but with different neck configurations. Two group of implants were inserted 1mm subcrestal. Control group has a micro-threaded neck and the Test group has a sloped microthreaded neck. Immediate loading was applied using a constructed metallic structure. After three months, soft and hard tissue levels were assessed by histomorphometric analysis. Results: The mean soft tissue thickness (STT) was 2.5 ± 0.2 mm for the Control group and 3.3 ± 0.3 mm for Test group (p = 0.036), meanwhile the mean marginal bone loss (MBL) was 1.53 ± 0.34 mm for Control group and, 1.62 ± 0.22 mm for Test group (p \u3e 0.05). Conclusions: Within the limitations of this experimental model in dogs, the findings showed that dental implants with microthreaded and microthreaded sloped necks installed in immediate post extraction sites with immediate load, presented a comparable perimplant tissue behavior

    Generation of a human control iPS cell line (ESi080‐A) from a donor with no rheumatic diseases

    Get PDF
    [Abstract] Here, we report the establishment of the human iPS cell line N1-FiPS4F#7 generated from skin cells of a patient with no rheumatic diseases, thus obtaining an appropriate control iPS cell line for researchers working in the field of rheumatic diseases. The reprogramming factors Oct4, Sox2, Klf4 and c-Myc were introduced using a non-integrating reprogramming strategy involving Sendai Virus.Instituto de Salud Carlos III; PI17/0219

    Versatility of Induced Pluripotent Stem Cells (iPSCs) for Improving the Knowledge on Musculoskeletal Diseases

    Get PDF
    [Abstract] Induced pluripotent stem cells (iPSCs) represent an unlimited source of pluripotent cells capable of di erentiating into any cell type of the body. Several studies have demonstrated the valuable use of iPSCs as a tool for studying the molecular and cellular mechanisms underlying disorders a ecting bone, cartilage and muscle, as well as their potential for tissue repair. Musculoskeletal diseases are one of the major causes of disability worldwide and impose an important socio-economic burden. To date there is neither cure nor proven approach for e ectively treating most of these conditions and therefore new strategies involving the use of cells have been increasingly investigated in the recent years. Nevertheless, some limitations related to the safety and di erentiation protocols among others remain, which humpers the translational application of these strategies. Nonetheless, the potential is indisputable and iPSCs are likely to be a source of di erent types of cells useful in the musculoskeletal field, for either disease modeling or regenerative medicine. In this review, we aim to illustrate the great potential of iPSCs by summarizing and discussing the in vitro tissue regeneration preclinical studies that have been carried out in the musculoskeletal field by using iPSCs.Instituto de Salud Carlos III; PI17/02197Xunta de Galicia; R2016/036Xunta de Galicia; R2014/050Xunta de Galicia; CN2012/142Xunta de Galicia; GPC2014/04

    Usefulness of mesenchymal cell lines for bone and cartilage regeneration research

    Get PDF
    [Abstract] The unavailability of sufficient numbers of human primary cells is a major roadblock for in vitro repair of bone and/or cartilage, and for performing disease modelling experiments. Immortalized mesenchymal stromal cells (iMSCs) may be employed as a research tool for avoiding these problems. The purpose of this review was to revise the available literature on the characteristics of the iMSC lines, paying special attention to the maintenance of the phenotype of the primary cells from which they were derived, and whether they are effectively useful for in vitro disease modeling and cell therapy purposes. This review was performed by searching on Web of Science, Scopus, and PubMed databases from 1 January 2015 to 30 September 2019. The keywords used were ALL = (mesenchymal AND (“cell line” OR immortal*) AND (cartilage OR chondrogenesis OR bone OR osteogenesis) AND human). Only original research studies in which a human iMSC line was employed for osteogenesis or chondrogenesis experiments were included. After describing the success of the immortalization protocol, we focused on the iMSCs maintenance of the parental phenotype and multipotency. According to the literature revised, it seems that the maintenance of these characteristics is not guaranteed by immortalization, and that careful selection and validation of clones with particular characteristics is necessary for taking advantage of the full potential of iMSC to be employed in bone and cartilage-related research.Xunta de Galicia; R2016/036Deputación da Coruña; BINV-CS/2016Xunta de Galicia; R2014/050Xunta de Galicia; CN2012/142Xunta de Galicia; GPC2014/04

    Human cartilage engineering in an in vitro repair model using collagen scaffolds and mesenchymal stromal cells

    Get PDF
    [Abstract] The purpose of this study was to investigate cartilage repair of in vitro lesion models using human bone marrow mesenchymal stromal cells (hBMSCs) with different collagen (Col) scaffolds. Lesions were made in human cartilage biopsies. Injured samples were pre-treated with interleukin 1β (IL1β) for 24 h; also, samples were not pre-treated. hBMSCs were seeded on different types of collagen scaffolds. The resulting constructs were placed into the lesions, and the biopsies were cultured for 2 months in chondrogenic medium. Using the modified ICRSII scale, neotissues from the different scaffolds showed ICRS II overall assessment scores ranging from 50% (fibrocartilage) to 100% (hyaline cartilage), except for the Col I +Col II +HS constructs (fibrocartilage/hyaline cartilage, 73%). Data showed that hBMSCs cultured only on Col I +Col II +HS scaffolds displayed a chondrocyte-like morphology and cartilage-like matrix close to native cartilage. Furthermore, IL1β pre-treated biopsies decreased capacity for repair by hBMSCs and decreased levels of chondrogenic phenotype of human cartilage lesions.Instituto de Salud Carlos III; CB06/01/0040Xunta de Galicia ; R2016/036Xunta de Galicia; R2014/050Xunta de Galicia; GPC2014/048Ministerio de Esconomía, Industria y Competitividad; RTC-2016-5386-1Madrid (Comunidad Autónoma); S2009/MAT-147

    Immortalizing mesenchymal stromal cells from aged donors while keeping their essential features

    Get PDF
    [Abstract] Human bone marrow-derived mesenchymal stromal cells (MSCs) obtained from aged patients are prone to senesce and diminish their differentiation potential, therefore limiting their usefulness for osteochondral regenerative medicine approaches or to study age-related diseases, such as osteoarthiritis (OA). MSCs can be transduced with immortalizing genes to overcome this limitation, but transduction of primary slow-dividing cells has proven to be challenging. Methods for enhancing transduction efficiency (such as spinoculation, chemical adjuvants, or transgene expression inductors) can be used, but several parameters must be adapted for each transduction system. In order to develop a transduction method suitable for the immortalization of MSCs from aged donors, we used a spinoculation method. Incubation parameters of packaging cells, speed and time of centrifugation, and valproic acid concentration to induce transgene expression have been adjusted. In this way, four immortalized MSC lines (iMSC#6, iMSC#8, iMSC#9, and iMSC#10) were generated. These immortalized MSCs (iMSCs) were capable of bypassing senescence and proliferating at a higher rate than primary MSCs. Characterization of iMSCs showed that these cells kept the expression of mesenchymal surface markers and were able to differentiate towards osteoblasts, adipocytes, and chondrocytes. Nevertheless, alterations in the CD105 expression and a switch of cell fate-commitment towards the osteogenic lineage have been noticed. In conclusion, the developed transduction method is suitable for the immortalization of MSCs derived from aged donors. The generated iMSC lines maintain essential mesenchymal features and are expected to be useful tools for the bone and cartilage regenerative medicine research.Xunta de Galicia; R2016/036Xunta de Galicia; R2014/050Xunta de Galicia; CN2012/142Xunta de Galicia; GPC2014/048Deputación da Coruña; BINV-CS/2016Instituto de Salud Carlos III; PI17/0219

    Generation of Mesenchymal Cell Lines Derived from Aged Donors

    Get PDF
    [Abstract] Background: Mesenchymal stromal cells (MSCs) have the capacity for self-renewal and multi-differentiation, and for this reason they are considered a potential cellular source in regenerative medicine of cartilage and bone. However, research on this field is impaired by the predisposition of primary MSCs to senescence during culture expansion. Therefore, the aim of this study was to generate and characterize immortalized MSC (iMSC) lines from aged donors. Methods: Primary MSCs were immortalized by transduction of simian virus 40 large T antigen (SV40LT) and human telomerase reverse transcriptase (hTERT). Proliferation, senescence, phenotype and multi-differentiation potential of the resulting iMSC lines were analyzed. Results: MSCs proliferate faster than primary MSCs, overcome senescence and are phenotypically similar to primary MSCs. Nevertheless, their multi-differentiation potential is unbalanced towards the osteogenic lineage. There are no clear differences between osteoarthritis (OA) and non-OA iMSCs in terms of proliferation, senescence, phenotype or differentiation potential. Conclusions: Primary MSCs obtained from elderly patients can be immortalized by transduction of SV40LT and hTERT. The high osteogenic potential of iMSCs converts them into an excellent cellular source to take part in in vitro models to study bone tissue engineering.This research was carried out thanks to the funding from Rede Galega de Terapia Celular 2016 (R2016/036) and Grupos con Potencial de Crecemento 2020 (ED431B 2020/55) from Xunta de Galicia, Proyectos de Investigación 2017 (PI17/02197) from Instituto de Salud Carlos III and the Biomedical Research Network Center (CIBER). The Biomedical Research Network Center (CIBER) is an initiative from Instituto de Salud Carlos III (ISCIII). MPR and SRF were granted a predoctoral fellowship from Xunta de Galicia and European Union (European Social Fund)Xunta de Galicia; R2016/036Xunta de Galicia; ED431B 2020/5

    Generation of osteoarthritis and healthy mesenchymal cell lines for research on regenerative medicine for osteoarthritis

    Get PDF
    [Purpose] Bone-marrow mesenchymal stem cells (BM-MSCs) are multipotent self-renewal adult cells with potential to regenerate the damaged tissues in degenerative diseases such as osteoarthritis (OA). Nevertheless, research require in vitro expansion of BM-MSCs, a process which eventually causes cell senescence. To overcome this problem cell lines can be used but, currently, BM-MSC lines available are scarce and present limitations regarding their differentiation capacities. For this reason, the aim of this study was to generate and characterize human BM-MSCs lines, derived from an OA patient and a healthy donor, with high chondrogenic and osteogenic capacities for their use in research on Regenerative Medicine for OA
    corecore