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Abstract: The unavailability of sufficient numbers of human primary cells is a major roadblock
for in vitro repair of bone and/or cartilage, and for performing disease modelling experiments.
Immortalized mesenchymal stromal cells (iMSCs) may be employed as a research tool for avoiding
these problems. The purpose of this review was to revise the available literature on the characteristics
of the iMSC lines, paying special attention to the maintenance of the phenotype of the primary
cells from which they were derived, and whether they are effectively useful for in vitro disease
modeling and cell therapy purposes. This review was performed by searching on Web of Science,
Scopus, and PubMed databases from 1 January 2015 to 30 September 2019. The keywords used
were ALL = (mesenchymal AND (“cell line” OR immortal*) AND (cartilage OR chondrogenesis
OR bone OR osteogenesis) AND human). Only original research studies in which a human iMSC
line was employed for osteogenesis or chondrogenesis experiments were included. After describing
the success of the immortalization protocol, we focused on the iMSCs maintenance of the parental
phenotype and multipotency. According to the literature revised, it seems that the maintenance of
these characteristics is not guaranteed by immortalization, and that careful selection and validation
of clones with particular characteristics is necessary for taking advantage of the full potential of iMSC
to be employed in bone and cartilage-related research.

Keywords: cartilage and bone repair; immortalization; mesenchymal stromal cells; cell therapy;
tissue engineering
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1. Introduction

Therapeutic options capable of restoring the physiological properties of bone and cartilage are still
lacking [1,2]. Due to the increase in life expectancy of the population, the incidence of musculoskeletal
disorders, such as fractures, osteoporosis, maxillofacial pathologies, and rheumatic diseases such as
osteoarthritis, is rising [3,4]. In this context, tissue engineering has emerged as a potential alternative
treatment that could provide biological tissue substitutes for replacing the damaged ones, using
scaffolds and cells. However, although many efforts have been made, very few tissue engineering
techniques have been translated into clinical practice, and the ideal scaffold for engineering bone and
cartilage substitutes has not yet been developed [1,4–6].

Tissue engineering techniques, combining scaffolds and cells, must undergo in vitro testing
before translation into clinic or preclinical models. Human mesenchymal stromal cells (MSCs) are
often employed in bone and cartilage tissue engineering approaches because of their proliferation
and multidifferentiation abilities [7–9]. However, much more research is still needed to optimize
isolation, expansion, differentiation, and preconditioning of MSCs before implantation [10] to maximize
cell retention and viability and, in the case of bone engineering, to improve vascular network
formation [1]. Furthermore, there are still some concerns about biosafety and efficacy of MSCs for
clinical applications [11] as well as several other associated risk factors, such as the MSC differentiation
status [12]. The unavailability of sufficient numbers of human primary cells is likely to delay the
advance of research in these fields. This lack of primary MSCs is not only due to them being scarce
(mainly healthy ones), but also the limited lifespan of the cells after isolation and in vitro culture. It has
been described that human MSCs can achieve a maximum of 30–40 population doublings (PDs) in vitro
before they lose their proliferation potential [13–15]. In addition, heterogeneity increases between
MSCs which have been derived from the same donor at different passages, and the expanded MSCs
progressively lose their differentiation potential [7,8,13]. There is also variability among donors [16],
apart from the single MSC-derived clones isolated from the same donor [17–19]. For these reasons,
human cell lines, and specifically iMSC lines, are only being used for research purposes.

Nowadays, a high number of MSC lines that display specific characteristics and differentiation
capabilities have been generated and are valuable tools as part of models of disease and tissue repairing
strategies. Different MSC lines have been employed for testing [17,20–25] or producing [26,27]
engineered scaffolds for skeletal applications, and for both investigating the MSC differentiation
process [28–34] and finding new ways to improve it [35–39]. Additionally, these cell lines have also
been used for analyzing functional makers [19,40] or even for exploring their roles in different diseases,
such as osteoarthritis [41,42].

The aim of this review was to analyze the characteristics of the MSC lines that are being used
currently. Also, we aimed to investigate whether the MSC lines keep the phenotype of the primary
cells from which they were derived, and if they could indeed be good models of tissue regeneration
and disease.

2. Methodology

This review was carried out by employing Web of Science, Scopus, and PubMed databases from
1st January 2015 to 30th September 2019. In order to identify the human immortal MSC (iMSC) lines
that are being used currently in the fields of bone and cartilage research, the keywords used were ALL
= (mesenchymal AND (“cell line” OR immortal*) AND (cartilage OR chondrogenesis OR bone OR
osteogenesis) AND human). Only original research studies were included in the analysis. References
of the selected articles were included when relevant, and duplicates were excluded. After screening
the title/abstract or full text, articles in which no human iMSC line was employed for osteogenesis or
chondrogenesis experiments were excluded. The PRISMA flow diagram [43] is shown in Figure 1.
This way, we identified 38 human iMSC lines derived from MSCs of single or “pooled” donors and
whose osteogenic and/or chondrogenic potential had been tested.
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Figure 1. PRISMA flow diagram showing the search process carried out to select articles to be analyzed
for this review.

For each iMSC line identified, we collected the following data: immortalization genes and
method employed; tissue of origin and donor characteristics; if the iMSC line was clonal; whether
it was tumorigenic and how its tumorigenicity had been assayed; and if it had been validated by
short tandem repeat (STR) genotyping, as seen in Table 1. In addition, we investigated how its
multidifferentiation (osteogenic, chondrogenic, and adipogenic) potential had been assessed and what
results were obtained, as seen in Table 2. Afterwards, we described the immortalization strategies
and their mechanism of action, as well as the outcomes and the characteristics of the iMSC lines
revised, focusing on their osteogenic and chondrogenic capacities and potential usefulness for bone
and cartilage regeneration research.
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Table 1. Basic characteristics of the reviewed immortal MSC (iMSC) lines.

MSC Line Immortalization
Genes

Immortalization
Method Tissue Donor

Characteristics
STR

Genotyping Clonality Tumorigenicity References

hMSC-T SV40LT Transfection Bone marrow Unknown No Unclear 1 No (tested by
soft agar) [44]

KM101 SV40LT Transfection Bone marrow 48-year-old
male No Yes Not tested [45,46]

L87/4 SV40LT Transfection Bone marrow 70-year-old
male No Yes Not

tested/shown [17,47]

V54/2 SV40LT Transfection Peripheral
blood Healthy donor No Yes Not

tested/shown [17,48]

iUC-MSCs SV40LT Retroviral
transduction Umbilical cord Unknown No No No (tested in

IDM) [49]

iSuPs SV40LT Retroviral
transduction Coronal sutures

15 to
17-month-old

males
No No No (tested in

IDM) [50]

TAg cells SV40LT Lentiviral
transduction

Cranial
periosteum

Healthy
(fracture
patient)

No No Not tested [51]

iDFCs SV40LT Retroviral
transduction Dental follicle

Three young
adults (18–20

years old)
No Yes Not tested [52,53]

OA-MSCs SV40LT Retroviral
transduction

Articular
cartilage (knee)

Osteoarthritic
61-year-old
male and

69-year-old
female

Yes Yes 2 Not
tested/shown [41,42]

KP E6/E7 Retroviral
transduction Bone marrow 61-year-old

female No No No (tested in
IDM) [54–57]

UE6E7-16 3 E6/E7 Retroviral
transduction Bone marrow 91-year-old

female Yes Yes Not shown [58,59]

HS-27 E6/E7 Retroviral
transduction Bone marrow Adult donor No Yes Not tested [60,61]
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Table 1. Cont.

MSC Line Immortalization
Genes

Immortalization
Method Tissue Donor

Characteristics
STR

Genotyping Clonality Tumorigenicity References

PDLSC-Bmi1 4 Bmi1 Retroviral
transduction

Periodontal
ligament

15 to 20-year-old
donors No No Not tested [62]

hMSC-hTERT hTERT Retroviral
transduction Bone marrow

Healthy
33-year-old

male
No No 5 No (tested in

IDM) [30,33,34,63–69]

TERT4
(hMSC-hTERT

derived)
hTERT Retroviral

transduction Bone marrow
Healthy

33-year-old
male

No No No (tested in
IDM) 6 [35,40,70]

iMSC#3 hTERT Retroviral
transduction Bone marrow Healthy male No Yes No (tested in

IDM) [71–73]

BMA13H 7 hTERT Retroviral
transduction Bone marrow Unknown No No Not tested [74,75]

SCP-1 hTERT Lentiviral
transduction Bone marrow Unknown No Yes

No (tested in
IMD and by soft

agar assay)

[14,20,24,25,38,
76–80]

Y201 hTERT Lentiviral
transduction Bone marrow Unknown No Yes No (tested in

IDM) [19,36,81–83]

Y101 hTERT Lentiviral
transduction Bone marrow Unknown [19,32]

MSOD hTERT Lentiviral
transduction Bone marrow

Healthy
55-year-old

female
Yes Yes No (tested in

IDM) [15,26]

ASC/TERT1 hTERT Retroviral
transduction Adipose tissue Unknown Yes No No (soft agar

assay) [22,84]

hASCs-T 7 hTERT Lentiviral
transduction Adipose tissue

Two males and
two females (21
to 59 years old)

No No No (soft agar
assay) [85]

GB/hTERT
MSCs hTERT Transfection Umbilical cord Unknown No No No (soft agar

assay) [86]

SDP11 hTERT Transfection Dental pulp 6 to 8-year-old
donors No Yes Not tested [87,88]

Pelt cells hTERT Retroviral
transduction

Periodontal
ligament Adult donor No No Not

tested/shown [31,89,90]
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Table 1. Cont.

MSC Line Immortalization
Genes

Immortalization
Method Tissue Donor

Characteristics
STR

Genotyping Clonality Tumorigenicity References

CMSC29 hTERT Retroviral
transduction

Placenta
(Chorionic Villi) Unknown No Yes No (tested by

soft agar assay) [91–93]

DMSC23 hTERT Retroviral
transduction

Placenta
(Decidua
Basalis)

Unknown No Yes No (tested by
soft agar assay) [91–93]

CPC531 hTERT Lentiviral
transduction

Articular
cartilage (knee)

65 to 75-year-old
patients No Unclear 1 Not

tested/shown [94,95]

hASCs-TS
(same parental

cells as
hASCs-T)

hTERT and
SV40LT

Lentiviral
transduction Adipose tissue

Two males and
two females (21
to 59 years old)

No No No (soft agar
assay) [85]

3A6
(KP-derived)

hTERT and
E6/E7

Transfection
(hTERT) Bone marrow 61-year-old

female No Yes Not tested [39,55,56]

hASCs-TE
(same parental

cells as
hASCs-T)

hTERT and
E6/E7

Lentiviral
transduction Adipose tissue

Two males and
two females (21
to 59 years old)

No No No (soft agar
assay) [85]

UE6E7T-3 (same
parental cells as

UE6E7-16)

hTERT and
E6/E7

Retroviral
transduction Bone marrow 91-year-old

female Yes Yes

Tested in soft
agar at “low”

(PDs ≤ 200) and
high (PDs = 252)
passages, with

only high
passage

UE6E7T-3 being
capable of
forming

colonies; high
passage

UE6E7T-3
formed

sarcomas in
IDM

[28,96,97]
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Table 1. Cont.

MSC Line Immortalization
Genes

Immortalization
Method Tissue Donor

Characteristics
STR

Genotyping Clonality Tumorigenicity References

UE6E7T-11
(same parental

cells as
UE6E7-16)

hTERT and
E6/E7

Retroviral
transduction Bone marrow 91-year-old

female Yes Yes Not shown [58,98]

UE6E7T-2 (same
parental cells as

UE6E7-16)

hTERT and
E6/E7

Retroviral
transduction Bone marrow 91-year-old

female Yes Yes Not shown [99]

imhMSCs hTERT and
E6/E7

Retroviral
transduction Bone marrow Unknown No Unclear 1 No (tested in

IDM) [18,23,29,100]

3 Hits hMPC hTERT and
E6/E7

Retroviral
transduction Bone marrow

Healthy
34-year-old

male
Yes No

No (tested in
IDM; only

c-Fos-transduced
cells were

tumorigenic)

[101–103]

UE7T-13 (same
parental cells as

UE6E7-16)
hTERT and E7 Retroviral

transduction Bone marrow 91-year-old
female Yes Yes Not shown [21,37,88,104,

105]

1 Clones have been generated but it is unclear if they have been used afterwards. 2 Several clones have been generated and analyzed. 3 Not completely immortalized because E6/E7 was
sufficient to extend lifespan but not to bypass senescence. 4 Probably incompletely immortalized. 5 [30,68,69] employed hMSC-hTERT-derived clones. 6 TERT20 at higher passages formed
tumors composed of mesoderm type cells in IDM. 7 Not completely immortalized because hTERT was not sufficient to bypass senescence.
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Table 2. Differentiation potential of reviewed iMSC lines.

MSC Line Osteogenic Potential Chondrogenic Potential Adipogenic Potential

hMSC-T
Positive for VKS and osteocalcin

upregulation (increased compared with
primary MSCs) [44]

Not tested Not tested

KM101 Positive for ALP activity [46] Not tested Tested and no adipogenic differentiation
potential was found (also not shown) [45]

L87/4 Not tested/shown
Positive for ABS and ColII

immunostaining in 3D alginate and
PGA/PLLA scaffolds [17]

Not tested/shown

V54/2 Not tested/shown
Positive for ABS and ColII

immunostaining in 3D alginate and
PGA/PLLA scaffolds [17]

Not tested/shown

iUC-MSCs Positive for Runx2 and Osteocalcin
upregulation [49] Positive for Sox9 upregulation [49] Positive for PPARγ upregulation [49]

iSuPs
Positive for ARS (increased if SV40LT is
removed) and osteogenesis-related genes

upregulation [50]

No chondrogenic differentiation
potential was found (also not shown) [50]

Positive for OROS (increased if SV40LT
is removed) [50]

TAg cells

Positive for hydroxyapatite formation
(showing earlier and stronger

mineralization than parental cells) and
upregulation of osteogenesis-related

genes (increased compared with primary
cells) [51]

Not tested Not tested

iDFCs

Positive for ARS, APS, and
osteogenesis-related genes upregulation;
osteogenic potential similar to primary

cells [52]

Positive for ABS and SOX9 upregulation
in 2D culture [52]

Positive for OROS and
adipogenesis-related genes upregulation

(PPARγ and LPL) [52]

OA-MSCs Positive for ARS and ALP upregulation
[41,42]

Positive for SOS [41], ABS [42] and
upregulation of Sox9, Col2A1, ACAN

and COL10A1 [41,42] in pellet [41] and
2D culture [42]

Positive for OROS (weak staining) and
LPL upregulation [41]
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Table 2. Cont.

MSC Line Osteogenic Potential Chondrogenic Potential Adipogenic Potential

KP Positive for APS, ARS, and VKS [54] Proved by ABS [54,57] and ColII
immunostaining [57] in pellet culture Positive for OROS [54]

UE6E7-16 Positive for osteocalcin production [59] Not tested/shown Positive for PPARγ production [59]

HS-27 Positive for ALP activity, calcium
deposition and osterix upregulation [61] Not tested/shown Positive for OROS in presence of steroids

[60]

PDLSC-Bmi1
Positive for ARS, ALP activity, and

osteogenesis-related genes upregulation
[62]

Not tested Positive for OROS [62]

hMSC-hTERT

Positive for ARS [64], ALP activity [33],
upregulation of osteogenesis-related

genes [33,63,68], and in vivo bone
formation [63,68]

Positive for ABS [64] and ColII
immunostaining [63,67] in 2D culture

Positive for OROS and upregulation of
adipogenesis-related genes [33]

TERT4 (hMSC-hTERT derived)
Positive for ARS [40,70], ALP activity

[40] and upregulation of
osteogenesis-related genes [40]

Positive for ABS [35,70], GAG assay [35],
and upregulation of ColII [35,70] but also

ColX [35], in pellet culture; reduced
compared with primary MSCs

Positive for OROS [40,70] and
upregulation of adipogenesis-related

genes [40]

iMSC#3 Positive for ARS, APS, and Runx2
upregulation [71]

Positive for ABS, TBS, and GAG assay in
pellet culture [72]; low chondrogenic

potential but stimulation of chondrocyte
differentiation

Positive for OROS, adipogenesis-related
genes upregulation [71,73], and NRS [73]

BMA13H Positive for ARS (reduced compared
with primary cells) [74]

Positive for ABS and GAG assay in 2D
culture [74]; also positive for TBS, PSR

and aggrecan and ColII immunostaining
in 3D culture [75]; chondrogenic

potential reduced compared with
primary cells [74]

Positive for OROS (reduced compared
with primary cells) [74]

SCP-1

Positive for VKS (increased compared
with MSCs) [14], ARS [78], ALP activity

[78], and upregulation of
osteogenesis-related genes [76]

Positive for TBS in pellet culture [14];
ColII and GAG production in 3D printed

scaffolds [24]
Positive for OROS [14]
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Table 2. Cont.

MSC Line Osteogenic Potential Chondrogenic Potential Adipogenic Potential

Y201
Positive for ARS [19], ALP activity
[19,82,83], and Runx2 upregulation

[19,82]

Positive for ABS, GAG assay, and Sox9
upregulation in pellet culture [19]

Positive for OROS (reduced compared to
primary MSCs) and upregulation of
adipogenesis-related genes [19,82]

Y101 (derived from the same donor than
Y201)

Proved by ARS [19,32], VKS [32], ALP
activity, and osteogenesis-related genes’

upregulation [19,32]; osteogenic
potential similar to Y201 [19]

Positive for ABS, GAG assay and Sox9
upregulation in pellet culture;

chondrogenic potential similar to Y201
[19]

Positive for OROS and upregulation of
adipogenesis-related genes; adipogenic

potential reduced compared to Y201 [19]

MSOD
Positive for ARS [15], upregulation of

osteogenesis-related genes [15,26], and
in vivo bone formation [15]

Weak positivity for ABS and
upregulation of ColX but not ColII nor

Sox9, similarly to primary parental cells;
tested in pellet culture [15]

Positive for OROS and PPARγ
upregulation [15]

ASC/TERT1 Positive for VKS and ALP activity [84]

Positive for ABS, trichrome staining and
ColII immunostaining in 3D scaffolds;

reduced cartilage quality in comparison
with chondrocytes [22]

Positive for OROS and PPARγ
upregulation; adipogenic potential

increased compared with primary cells
[84]

hASCs-T
Positive for APS; reduced osteogenic
potential in comparison with primary

cells [85]
Not tested Tested by OROS, but almost no lipid

droplets detected [85]

GB/hTERT MSCs Positive for ARS; reduced compared
with primary cells [86] Not tested Positive for OROS [86]

SDP11 Positive for BMP-2 and ALP
upregulation [88] Not tested Positive for OROS but not shown [88]

Pelt cells

Positive for ARS (slightly reduced
compared with primary cells) [90] and

cementogenesis-related gene expression
[31]

Not tested Not tested

CMSC29 Positive for ARS [91] Positive for ABS in pellet culture [91,92] Very weak positivity for OROS [91]

DMSC23 Positive for ARS (increased compared
with CMSC29) [91,93] Positive for ABS in pellet culture [91,92] Very weak positivity for OROS [91]

CPC531 Positive for APS and upregulation of
osteogenesis-related genes [95]

Spontaneous chondrogenesis in 3D
alginate culture, proved by upregulation
of ColII and Sox9 and downregulation of

Runx2 and ColI [95]

Positive for OROS and upregulation of
adipogenesis-related genes [95]
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Table 2. Cont.

MSC Line Osteogenic Potential Chondrogenic Potential Adipogenic Potential

hASCs-TS (same parental cells as
hASCs-T)

Tested by APS, but no mineralization
detected [85] Not tested

Positive for OROS; reduced adipogenic
potential in comparison with primary

cells [85]

3A6 (KP-derived)
Positive for ARS and VKS (increased

compared with KP) [55], and also ALP
activity [39]

Positive for ABS [55] and ColII
upregulation [56] in pellet culture

Positive for OROS (reduced compared
with KP) [55]

hASCs-TE (same parental cells as
hASCs-T)

Positive for APS; increased in
comparison with primary cells [85] Not tested Positive for OROS; slightly reduced in

comparison with primary cells [85]

UE6E7T-3 (same parental cells as
UE6E7-16)

Positive for ALP activity [97], ARS and
upregulation of osteogenesis-related

genes [28]
Not tested/shown Positive for OROS [97]

UE6E7T-11 (same parental cells as
UE6E7-16)

Positive for APS and bone sialoprotein
(BSP) upregulation [98] Not tested/shown Not tested/shown

UE6E7T-2 (same parental cells as
UE6E7-16) Not tested/shown Tested by ABS in 2D culture; negative

under employed conditions [99] Not tested/shown

imhMSCs Positive for VKS and upregulation of
osteogenesis-related genes [18]

Weak positivity for ABS and with weak
upregulation of chondrogenesis-related

genes (similarly to primary parental
cells); tested in pellet culture [18]

Positive for OROS and PPARγ
upregulation [18]

3 Hits hMPC Positive for ARS [102,103], APS [101,102]
and Runx2 upregulation [102]

Positive for ABS [102,103] and TBS [101]
in pellet culture, but reduced compared

with primary MSCs

Positive for OROS [101–103], but
reduced compared with primary MSCs

UE7T-13 (same parental cells as
UE6E7-16)

Positive for ARS [37,88,105] and ALP
activity [88] Not tested/shown Positive for OROS [37,88]
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3. Immortal Mesenchymal Stromal Cell (iMSC) Lines

3.1. Immortalizing Human Adult MSCs

Immortalization is the process by which cells acquire an unlimited proliferation potential
by bypassing senescence [106]. There are two types of senescence that cells must evade
for their immortalization: replicative senescence, caused by telomere shortening and resulting
chromosomal instability, and nonreplicative senescence, promoted by cellular stress, DNA damage, or
oncogenic signals.

The initial in vitro growth arrest of human primary MSCs is presumed to be due to nonreplicative
senescence, which is regulated by p53 and Rb-related pathways. In response to stress, the tumor
suppressor p53 is phosphorylated and liberated from its binding to E3 ubiquitin ligase Mdm2, hence
activating the senescence pathways. During quiescence, unphosphorylated Rb proteins control cell
proliferation by binding and inhibiting E2F transcription factors, thus blocking cell cycle progression.
During cell growth, signaling pathways that phosphorylate Rb proteins are activated, promoting its
disassociation from E2F and allowing for the expression of E2F-dependent genes necessary for cell
division [107,108]. Inhibition of p53 and inactivation of Rb by viral oncogenes have been shown to
extend the life span of several cell types in culture, but telomeres maintenance is also needed for
preventing replicative senescence [106]. Since human primary MSCs undergo progressive telomere
shortening during serial passaging, human telomerase reverse transcriptase (hTERT) expression is
needed to avoid telomere shortening [70]; otherwise, telomeres will shorten with every cell division
until a critical threshold at which cells enter senescence.

Both simian virus 40 large T antigen (SV40LT) and human papillomavirus (HPV) E6/E7 gene
transduction promote cell cycle progression by interfering with p53 and Rb-mediated pathways.
SV40LT binds to these two proteins, thus releasing the activity of E2F transcription factors and avoiding
growth arrest [107]. HPV E6/E7 proteins work in a similar manner, with p53 being the principal
target of E6 and Rb being degraded via the ubiquitin proteasome pathway by the action of E7 [109].
SV40LT transduction has been employed for immortalizing MSCs derived from bone marrow from
young and old donors [45,47], umbilical cord [49], cranial periosteum [51], coronal sutures [50], dental
follicle [52], peripheral blood [48], and osteoarthritic cartilage [41]. SV40LT expression increases the
lifespan of MSCs and usually raises its proliferation rate as well, but it has also been observed that
this increased lifespan is not unlimited. Lee et al. (2015) reported that after more than 80 passages,
SV40LT-transduced MSCs decreased their growth rate and entered senescence, indicating that this
antigen is not enough for complete immortalization of MSCs [44].

HPV E6/E7 genes have also been used for immortalizing MSCs derived from bone marrow [54,58],
and, in a similar way, E6/E7-transduced MSCs have been reported to enter a period of growth arrest
after 70 PDs, suggesting a limited effect of E6/E7 in prolonging lifespan [58]. The same occurs with the
p16 antagonist Bmi1, which has been reported to extend the lifespan of ligament-derived MSCs [62],
but also to be insufficient for immortalization, with Bmi1-transduced adipose tissue-derived MSCs
entering senescence after 55–60 PDs [110]. Since neither SV40LT nor E6/E7 proteins can promote
the telomere maintenance needed to achieve an unlimited lifespan, SV40LT and E6/E7-transduced
MSCs reported as immortal MSCs must have acquired a mechanism to prevent telomere shortening,
or they will eventually undergo replicative senescence. Nevertheless, short telomeres are a source
of chromosomal instability, and, if p53 activity is inhibited by SV40LT or E6/E7 proteins, alterations
resulting from this instability will increase the mutability of the genome and might eventually give rise
to telomerase re-expression [106].

It has been stated that hTERT transduction allows senescence evasion while maintaining in vitro
and in vivo osteogenic ability of MSCs [63,91]. Transduction of hTERT alone has been employed to
generate iMSC lines, but, since hTERT has no effect over non-replicative senescence, it has also been
reported to fail to immortalize MSCs derived from bone marrow [13,18,58,74,104] and adipose tissue [85].
Skårn et al. (2014) described that only one out of nine hTERT-transduced bone marrow-derived MSC
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clones was able to proliferate over 40 PDs, and even this clone showed a slow proliferation rate similar
to that of primary MSCs [71]. Other authors have confirmed that hTERT-transduced MSCs displayed a
lifespan similar to that of primary MSCs (about 30–40 PDs) [18,81]. Okamoto et al. (2002) observed
that p16 expression was upregulated in hTERT-transduced MSCs during passaging, finally leading to
senescence despite maintenance of telomeres length. Conversely, MSCs transduced with both hTERT
and E6/E7 were able to proliferate during more than 80 PDs [18], overcoming senescence, in the same
way that MSCs transduced with both hTERT and SV40LT acquired an unlimited lifespan [13,85,110].

However, in addition to giving rise to MSC lines derived from bone marrow from young and/or
healthy donors [15,63,71], which may well be less prone to suffer nonreplicative senescence, hTERT
transduction has also been shown to immortalize placenta-derived MSCs of fetal and maternal
origin [91], umbilical cord-derived MSCs [86], periodontal ligament-derived MSCs [89], adipose
tissue-derived MSCs [84], and, importantly, osteoarthritic cartilage-derived MSCs [94]. Therefore,
whether hTERT is sufficient to immortalize MSCs remains controversial. Immortalization requirements
could be dependent on cell characteristics, cell culture conditions, and any factors that influence
proneness to nonreplicative senescence, and seems not to be related to tissue of origin.

Transduction of hTERT has also been employed in combination with E6/E7 [18,55,58,85,101,104]
or SV40LT [13,85,110]. This combination of genes leaded to an unlimited proliferation potential of
the cells, which could not be obtained with the transduction of one gene only [58,85]. In the study of
Balducci et al. (2014), the combination of hTERT and SV40LT was more efficient than hTERT and E6/E7
in improving growth rate of adipose-tissue-derived MSCs, but both combinations were efficient in
overcoming senescence [85]. In short, hTERT alone, SV40LT alone, or E6/E7 alone could be enough to
achieve immortalization of MSCs or not, but the combination of p53/Rb repression together with a
mechanism of telomeres maintenance has always proven to be successful.

3.2. Multidifferentiation Potential of iMSCs

3.2.1. Osteogenic Potential

Out of the 35 iMSC lines included in this review whose osteogenic potential had been tested,
only one line showed no mineralization ability. This hASCs-T cell line was derived from adipose
tissue and immortalized with a combination of hTERT and SV40LT [85]. All the resting iMSCs were
capable of osteogenically differentiating upon induction, as shown by the standard histochemical
staining—alizarin red staining (ARS), Von Kossa staining (VKS), and alkaline phosphatase staining
(APS)—and gene expression analysis of bone-related genes RUNX2, osteocalcin, alkaline phosphatase
(ALP), BMP-2, bone sialoprotein (BSP), and COL1A1, as seen in Table 2.

In four out of the thirty iMSC lines which displayed osteogenic potential, this differentiation
ability was increased in comparison with primary MSCs, in terms of mineralization [14,85] and
osteogenesic-related gene expression [44,51]. This increment of the osteogenic potential neither seems
to be related to tissue’s origin, since it has been detected in iMSCs from bone marrow [14,44], cranial
periosteum [51], and adipose tissue origin [85], nor seems to be related to immortalization protocol, as
two of these cell lines were transduced with SV40LT [44,51], one was transduced with hTERT alone [14]
and the other one with hTERT and E6/E7 [85].

On the other hand, there were four iMSC lines that showed reduced osteogenic potential in
comparison with primary MSCs, all of them transduced with hTERT alone: BMA13H, hASCs-T,
GB/hTERT MSCs, and Pelt cells. Two of these cell lines, BMA13H and hASCs-T, were incompletely
immortalized [74,85], and so in these cases the reduction of osteogenic potential could be a result of the
progressive loss of differentiation potential that occurs in primary MSCs as well. Also, nonreplicative
senescence effects cannot be discarded in the reduction of osteogenic potential observed in GB/hTERT
MSCs (derived from umbilical cord) and Pelt cells (derived from the periodontal ligament) [86,90].

Of note, all the reviewed MSC cell lines immortalized with hTERT and E6/E7 were described
to maintain or enhance their osteogenic potential. Interestingly, the hTERT and E6/E7-transduced
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iMSC line 3A6 showed a higher osteogenic potential than their E6/E7-only-transduced counterpart,
the KP cells [55], suggesting that a complete immortalization could be beneficial for the bone-forming
capacity of MSCs. Nonetheless, hTERT expression in MSCs has also been shown to upregulate
osteogenesis-related genes such as RUNX2, osterix, and osteocalcin [91], and SV40LT-transduced
iMSCs have shown higher levels of RUNX2 than primary MSCs without any osteogenic stimuli
as well [51]. It is commonly accepted that osteogenesis is the default differentiation pathway for
MSCs [15,111] and the most commonly retained differentiation lineage at later passages. Thus,
we hypothesize that this high expression of bone-related transcription factors might be due to an
osteogenic commitment of later passaged MSCs instead of being due to an effect of the transduction of
the immortalization genes. These signs of “spontaneous differentiation” have also been observed in
the KP cells, but have been lost by complete immortalization of these cells with hTERT in addition to
E6/E7 genes [55].

A reduction of osteogenic potential was also observed in some MSC cell lines immortalized
with hTERT and SV40LT, such as hASCs-TS [85]. Song et al. (2017) also pointed out that reversibly
immortalized iSuPs (derived from coronal sutures) presented increased osteogenic potential when
the immortalization gene SV40LT was removed [50]. Shu et al. (2018) have proposed that MSCs with
higher proliferative activity, such as SV40LT-transduced MSCs, may need a longer time to differentiate
towards the osteogenic lineage [49]. Tátrai et al. (2012) reported that adipose tissue-derived MSCs
immortalized with a combination of SV40LT and hTERT showed a higher growth rate, as a well
as a reduced osteogenic and adipogenic potency [110]. The literature shows that the osteogenic
differentiation potential is the most commonly retained path after immortalization, and that MSCs are
able to differentiate towards this lineage if they are completely immortalized and adequate times and
strategies of osteogenic induction are used.

3.2.2. Chondrogenic Potential

Only 23 iMSC lines out of the 38 included in this review have been submitted for analysis of their
chondrogenic potential. Two iMSC lines did not show any chondrogenic potential when assessed
in two-dimensional culture: UE6E7T-2, derived from bone marrow and transduced with E6/E7 and
hTERT [99]; and iSuPS, derived from coronal sutures and transduced with SV40LT [50]. Three other
iMSC lines (SCP-1, BMA13H, and 3 Hits hMPC), all derived from bone marrow-MSCs, showed reduced
chondrogenic potential in comparison to primary cells; all these iMSC lines were chondrogenically
induced in three-dimensional culture and contained hTERT as immortalization gene, and two of them
were incompletely immortalized [14,74,101].

In many cases, the chondrogenic potential of iMSCs has been scarcely analyzed by one
single histochemical staining, either alcian blue staining (ABS) or toluidine blue staining
(TBS) [14,54,55,71,91,101]. Although chondrogenic transcription factor Sox9 and type II collagen
upregulation have been detected in chondrogenic-induced iMSCs, these cells showed the same
proneness to hypertrophy as primary MSCs, with type X collagen expression [15,35] and low-quality
cartilage production [22] with scarce exceptions [41,94], even when three-dimensional culture was
performed [15,22,35]. This low-quality cartilage generation is relatively common among MSCs.
It has been proposed that these cells are intrinsically committed to bone formation through the
endochondral ossification pathway, and that they follow this differentiation program after being
exposed to chondrogenic stimuli [111]. However, the lack of reproducibility among chondrogenic
protocols is also a feasible explanation [112], and it is important to note that good results have been
obtained when performing chondrogenesis onto suitable scaffolds [95]. Finger et al. (2003) found
that immortalized cell lines obtained from chondrocytes were highly proliferative and showed less
expression of genes involved in matrix synthesis and turnover than expected [113], in the same way
that higher proliferation rates are related to reduced mineralization upon osteogenic induction [49,110].

Despite this, it has been shown that low chondrogenic iMSCs can stimulate chondrocyte
differentiation when cocultured [71], possibly through the same trophic effects as primary MSCs. It is
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important to take into account that MSCs exists as heterogeneous populations, and that the iMSCs
differentiation properties could be derived from primary cells or be related to the clonal selection, as has
been proposed by Bourgine et al. (2014) [15]. Therefore, the differentiation potential of iMSCs should
be assessed in comparison with their untransduced counterparts—the same clone or the primary
cells derived from the same donor—in order to detect variations as a consequence of immortalization.
Selection of MSC subsets or development of methods to stimulate MSCs to induce and/or to modulate
specific attributes of the cells could give rise to more chondrogenic iMSC lines [9].

3.2.3. Adipogenic Potential

The adipogenic potential of 30 out of 38 iMSC lines was assessed, mainly by oil red O staining
(OROS), but also by gene expression analysis of adipogenesis-related genes, such as transcription factor
PPARγ, with different results, as seen in Table 1. Several hTERT-transduced iMSC lines derived from the
bone marrow [19,101], placenta [91], and adipose tissue [85] showed a reduction in adipogenic potential
in comparison with primary MSCs. In addition, the bone marrow-derived KM101 iMSC line was unable
to differentiate towards the adipogenic lineage [45], similar to incompletely immortalized hASCs-T [85].
Moreover, adipogenic potential of the 3A6 iMSC line was reduced in comparison with the KP cells
from which they were derived, unlike osteogenic potential [55]. Conversely, all the reviewed MSC cell
lines immortalized with SV40LT maintained their adipogenic potential. The adipose-tissue-derived
ASC/TERT1 cell line showed an increase in adipogenic potential after immortalization with hTERT [22].
Once more, iSUPS differentiation potential towards the adipogenic lineage was increased when SV40LT
was removed [50].

3.3. Surface Markers Expression of iMSCs

In 2006, the International Society for Cell Therapy proposed a panel of cell surface markers to
identify human MSC, including CD73, CD90, and CD105 [114]. However, none of these markers are
specific for MSCs, and their expression does not imply a multidifferentiation ability [115], since the same
expression pattern can be found in other cell types, such as fibroblasts [116]. Although the expression
of these surface markers is usually investigated in primary MSCs before immortalization, none of
the articles performed sorting selection; instead, the whole isolated population or uncharacterized
clones were employed for transduction. Nevertheless, the level of expression of these makers may
change due to passaging and culture conditions [81,115], and their expression in primary cells does
not guarantee that they will be expressed in immortalized cells, even if they are previously sorted.

For example, Abarrategi et al. (2018) noticed a lowering of CD73 and CD105 expression in
iMSCs in comparison with primary MSCs [102], and Alexander et al. (2015) observed that cranial
periosteum-derived TAg cells were less CD105-positive, but more CD146-positive than primary
cells [51]. Adipose-tissue-derived hASCs-TS and hASCs-TE showed the same decrease in CD105
expression and an increase in CD146 expression [85]. On the contrary, hTERT-transduced BMA13H
maintained CD105, but displayed reduced CD90 expression [81]. It is not possible to know if these
changes were caused by transduction of immortalization genes, subculturing, or both.

In addition, it is not clear whether the expression of a certain surface marker of this traditional
panel confers an advantage to differentiate towards a specific lineage; for example, it has been shown
that there are no differences in chondrogenic potential of MSCs caused by CD105 expression [117].
Therefore, the value of these surface markers for iMSCs characterization or selection may be
limited. However, the expression of several surface markers outside this panel may have functional
characteristics. For example, James et al. (2015) noted that nondifferentiating iMSC clones were uniquely
CD137-positive [19], and Jayasuriya et al. (2018) pointed that SV40LT-transduced OA-MSCs expressed
high levels of CD54, which is lowly expressed by bone marrow-derived MSCs but constitutively
expressed by articular chondrocytes [41].
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3.4. Clonality, Selection and Validation

It is known that polyclonal expansion favors selection of faster growing cells, while clone
characterization and selection may enable the maintenance of a subpopulation of cells with more
desirable characteristics [81]. Variations in differentiation potential exists among clones derived from
one single donor [19], and even among subclones derived from single MSCs [84]. Therefore, careful
selection of clones could favor certain applications.

Half of the iMSC lines that are reviewed here were clonal, while the other half were nonclonal.
However, some clones were not selected by their differentiation abilities or surface markers expression
profile, but were randomly picked [91] or chosen because of their proliferation capacity [71]. On
the contrary, Bourgine et al. (2014) decided to select the clone with the most prominent osteogenic
differentiation capacity, thus obtaining an iMSC line likely to be suitable for bone regeneration
approaches, but still with weak chondrogenic potential. Further studies are needed to know if the use
of a similar approach would give rise to an iMSC line with better chondrogenic potential [15].

Of note, only eight of the iMSC lines reviewed here—four of them derived from the same
donor—have been submitted to short tandem repeat (STR) analysis to confirm whether they originated
from one particular donor. This validation is important, especially if these iMSC lines are employed
for basic research about MSCs biology; for instance, comparing cell lines originating from young
and elderly donors or investigating the characteristics or behavior of these cells in skeletal diseases.
Using this approach, Jayasuriya et al. (2018) generated and analyzed clonal iMSC lines from knee
articular cartilage of osteoarthritic patients, identifying the existence of two MSC populations in
human osteoarthritic cartilage; one preferentially undergoing chondrogenesis and the other exhibiting
higher osteogenic potential. In this case, the generated cell lines were properly submitted to STR
genotyping [41].

3.5. Tumorigenicity

MSCs have been described as resistant to malignant transformation, requiring the combination of
several events to achieve an oncogenic phenotype. Primary MSCs have been widely used in clinical
trials, but immortalized MSCs transduced with proto-oncogenes can eventually become tumorigenic,
making them useless for clinical approaches, but not for research purposes. The tumorigenicity of 18
out of 38 iMSC lines included in this review was investigated by either soft agar colony formation
assay or in vivo tumorigenicity test in immunodeficient mice (IDM). There were only two cases in
which these cells showed signs of tumorigenicity; c-Fos-transduced 3 Hits hMPCs [102] and high
passaged UE6E7T-3 [96], as seen in Table 1. In the case of 3 Hits hMPCs, it is not surprising that the
transduction of the proto-oncogene c-Fos led to oncogenic transformation of iMSCs already transduced
with hTERT and E6/E7 genes. Importantly, transformed iMSCs lost their phenotype and experienced
changes in their differentiation potential, with c-Fos-transformed iMSCs showing reduced adipogenic
and osteogenic potential and a conserved ability to specifically differentiate towards the chondrogenic
lineage, as well as forming chondrogenic tumors in IDM. However, 3 Hits hMPCs did not display
tumorigenic features despite accumulating oncogenic mutations in hTERT and E6/E7 genes [102], thus
confirming that iMSCs need further signals to initiate carcinogenesis [106].

However, oncogenic mutations may arise during passaging of iMSCs [118]. In this regard, culture
conditions are important, since hTERT-transduced iMSCs seeded at low densities during long periods
of time have been reported to be tumorigenic [70]. Low density seeding provides an advantage for
clones with oncogenic mutations that display higher growth rates; the lower the density seeding, the
faster the accumulation of these oncogenic clones in the population. hTERT and E6/E7-transduced
UE6E7T-3 at high passages (252 PDs) were capable of forming colonies in soft agar and sarcomas in IDM,
while lower passaged cells (less than 200 PDs) did not shown any sign of malignant transformation [96].
This may indicate that although iMSCs have an unlimited lifespan, their ability to maintain their
phenotype may be restricted to the first PDs, and that their characteristics should be submitted to
periodical testing.
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It is important to note that hTERT expression also has a role in the achievement of cellular
capacities related to tumorigenesis, such as angiogenesis and immune system evasion. In the same
way, the inactivation of p53 and Rb by SV40LT and E6/E7 proteins is related to the acquisition of
cancer-related features. Moreover, if hTERT is re-expressed after SV40LT or E6/E7 transduction, its
recovery could favor the fixation of aberrant karyotypes that lead to malignant phenotypes [106].
Unsurprisingly, the introduction of immortalization genes in MSCs alters the expression levels of genes
associated with stem cell functions [91], which highlights the need for detailed characterization of
iMSC lines.

3.6. In Vivo Bone Formation Capacity

One of the fundamental characteristics of MSCs is their ability to form ectopic “ossicles”
which mimic the architecture of bone marrow [119]. The ectopic bone formation ability of
hTERT-transduced MSCs has been investigated in IDM. Simonsen et al. (2002) found that hMSCs-hTERT
generated bone-enclosing bone marrow cells and adipocytes when implanted subcutaneously with
hydroxyapatite/tricalcum phosphate powder [63]. hMSCs-hTERT-derived clones formed ectopic bone
marrow stroma-supporting hematopoiesis and adipocytes after in vivo transplantation as well [70].
However, after extensive subculturing, one of these clones was found to produce tumors, composed
mostly of mesoderm-type cells [70]. Bourgine et al. (2014) also assessed the bone formation ability of
MSOD together with ceramic granules in a fibrinogen/thrombin gel. They found that MSOD secreted a
dense collagen matrix and formed osteoid tissue [15].

4. Conclusions

A number of iMSC lines have been generated in an attempt to overcome the limitations associated
with primary MSCs. These cell lines have had many in vitro applications, including testing of
engineered scaffolds for bone and cartilage repair, decellularized extracellular matrix production,
investigation of the MSCs differentiation process at the molecular level, optimization of the current
differentiation protocols, and analysis of their behavior in the pathological joints. However, the
application of these cells has been for research purposes only as they present a risk of tumorigenicity.

Several approaches have been employed to confer an unlimited proliferation potential to MSCs,
mainly involving viral genes and hTERT transduction, with different degrees of success. It is still
unclear which set of genetic alterations are necessary and sufficient for MSC immortalization, but it
probably involves abrogation of replicative and nonreplicative senescence.

Alterations of the multidifferentiation potential of MSCs after immortalization have been described,
with the osteogenic potential being the best conserved in fully immortalized MSC lines. However,
there are also iMSC lines capable of differentiating towards the chondrogenic lineage when cultured in
3D environment. In addition, some studies suggest that other characteristics of iMSC lines, such as
secretion of trophic factors, are maintained in MSCs despite immortalization.

The ideal iMSC line should retain the phenotypic and functional characteristics of MSCs, as well
as a normal karyotype. The usefulness of these cell lines in bone and cartilage regenerative medicine
research would be increased if clones were carefully selected and validated. Before employing iMSCs for
basic or applied bone and cartilage research, their characteristics should be fully understood. Moreover,
the maintenance of these characteristics should be assessed periodically throughout passaging, as
immortalization does not guarantee it, and both polyclonal expansion and low-density seeding should
be avoided to prevent malignant transformation. If these requirements are fulfilled, iMSC lines could be
useful and convenient tools for basic research, testing of tissue engineering approaches, and production
of biotechnological products, among other applications.
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MSC Mesenchymal stromal cells
PDs Population doublings
iMSC Immortal mesenchymal stromal cells
hTERT Human telomerase reverse transcriptase
SV40LT Simian virus 40 large T antigen
HPV Human papillomavirus
ARS Alizarin Red Staining
VKS Von Kossa Staining
APS Alkaline Phosphatase Staining
ABS Alcian Blue Staining
TBS Toluidine Blue Staining
OROS
PSR

Oil Red O Staining
Picro-Sirius Red

STR Short Tandem Repeat
IDM Immunodeficient Mice
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