228 research outputs found

    From Marx to Gramsci to us: Laboratory to prison, and back

    Get PDF
    Marx and Gramsci remain two of the most constant presences and inspirations for those on the left. Yet there is a persistent sense that we have still to get them right. Perhaps this indicates that sources like this are now fully classics, to be returned, and returned to. In the case of Marx and Gramsci, a series of major works published in the Brill Historical Materialism series breaks new ground as well as returning to older controversies, both resolved and unresolved. Apart from remaining arguments concerning the status of materials unpublished in their own lifetimes, the major tension that emerges here is that between the task of immanent, contextual philology and the challenge of reading ‘Marx for today’ or ‘Gramsci for today’. The tension between text and context, and the question of what travels, conceptually persists

    Biogeochemical Cycling of 99Tc in Alkaline Sediments

    Get PDF
    99Tc will be present in significant quantities in radioactive wastes including intermediate-level waste (ILW). The internationally favored concept for disposing of higher activity radioactive wastes including ILW is via deep geological disposal in an underground engineered facility located ∼200–1000 m deep. Typically, in the deep geological disposal environment, the subsurface will be saturated, cement will be used extensively as an engineering material, and iron will be ubiquitous. This means that understanding Tc biogeochemistry in high pH, cementitious environments is important to underpin safety case development. Here, alkaline sediment microcosms (pH 10) were incubated under anoxic conditions under “no added Fe(III)” and “with added Fe(III)” conditions (added as ferrihydrite) at three Tc concentrations (10–11, 10–6, and 10–4 mol L–1). In the 10–6 mol L–1 Tc experiments with no added Fe(III), ∼35% Tc(VII) removal occurred during bioreduction. Solvent extraction of the residual solution phase indicated that ∼75% of Tc was present as Tc(IV), potentially as colloids. In both biologically active and sterile control experiments with added Fe(III), Fe(II) formed during bioreduction and >90% Tc was removed from the solution, most likely due to abiotic reduction mediated by Fe(II). X-ray absorption spectroscopy (XAS) showed that in bioreduced sediments, Tc was present as hydrous TcO2-like phases, with some evidence for an Fe association. When reduced sediments with added Fe(III) were air oxidized, there was a significant loss of Fe(II) over 1 month (∼50%), yet this was coupled to only modest Tc remobilization (∼25%). Here, XAS analysis suggested that with air oxidation, partial incorporation of Tc(IV) into newly forming Fe oxyhydr(oxide) minerals may be occurring. These data suggest that in Fe-rich, alkaline environments, biologically mediated processes may limit Tc mobility.Peer reviewe

    Targeting NAD+ Metabolism to Enhance Radiation Therapy Responses

    Get PDF
    Nicotinamide adenine dinucleotide (NAD+) metabolism is integrally connected with the mechanisms of action of radiation therapy and is altered in many radiation-resistant tumors. This makes NAD+ metabolism an ideal target for therapies that increase radiation sensitivity and improve patient outcomes. This review provides an overview of NAD+ metabolism in the context of the cellular response to ionizing radiation, as well as current therapies that target NAD+ metabolism to enhance radiation therapy responses. Additionally, we summarize state-of-the-art methods for measuring, modeling, and manipulating NAD+ metabolism, which are being used to identify novel targets in the NAD+ metabolic network for therapeutic interventions in combination with radiation therapy

    Improved protein arrays for quantitative systems analysis of the dynamics of signaling pathway interactions

    Get PDF
    An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states is presented. The signals are amplified linearly by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots, but are not linear by the enzyme-based amplification. Software is developed to facilitate the quantitative readouts of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways

    Extracting Gene Networks for Low-Dose Radiation Using Graph Theoretical Algorithms

    Get PDF
    Genes with common functions often exhibit correlated expression levels, which can be used to identify sets of interacting genes from microarray data. Microarrays typically measure expression across genomic space, creating a massive matrix of co-expression that must be mined to extract only the most relevant gene interactions. We describe a graph theoretical approach to extracting co-expressed sets of genes, based on the computation of cliques. Unlike the results of traditional clustering algorithms, cliques are not disjoint and allow genes to be assigned to multiple sets of interacting partners, consistent with biological reality. A graph is created by thresholding the correlation matrix to include only the correlations most likely to signify functional relationships. Cliques computed from the graph correspond to sets of genes for which significant edges are present between all members of the set, representing potential members of common or interacting pathways. Clique membership can be used to infer function about poorly annotated genes, based on the known functions of better-annotated genes with which they share clique membership (i.e., “guilt-by-association”). We illustrate our method by applying it to microarray data collected from the spleens of mice exposed to low-dose ionizing radiation. Differential analysis is used to identify sets of genes whose interactions are impacted by radiation exposure. The correlation graph is also queried independently of clique to extract edges that are impacted by radiation. We present several examples of multiple gene interactions that are altered by radiation exposure and thus represent potential molecular pathways that mediate the radiation response

    Metaschoepite Dissolution in Sediment Column Systems-Implications for Uranium Speciation and Transport

    Get PDF
    Metaschoepite is commonly found in U-contaminated environments and metaschoepite-bearing wastes may be managed via shallow or deep disposal. Understanding metaschoepite dissolution and tracking the fate of any liberated U is thus important. Here, discrete horizons of metaschoepite (UO3 center dot nH(2)O) particles were emplaced in flowing sediment/groundwater columns representative of the UK Sellafield Ltd. site. The column systems either remained oxic or became anoxic due to electron donor additions, and the columns were sacrificed after 6- and 12-months for analysis. Solution chemistry, extractions, and bulk and micro/nano-focus X-ray spectroscopies were used to track changes in U distribution and behavior. In the oxic columns, U migration was extensive, with UO22+ identified in effluents after 6-months of reaction using fluorescence spectroscopy. Unusually, in the electron-donor amended columns, during microbially mediated sulfate reduction, significant amounts of UO2-like colloids (>60% of the added U) were found in the effluents using TEM. XAS analysis of the U remaining associated with the reduced sediments confirmed the presence of trace U(VI), noncrystalline U(IV), and biogenic UO2, with UO2 becoming more dominant with time. This study highlights the potential for U(IV) colloid production from U(VI) solids under reducing conditions and the complexity of U biogeochemistry in dynamic systems.Peer reviewe
    corecore