17,665 research outputs found

    Control system for hunger and its implications in animals and man

    Get PDF
    No description supplie

    The synthesis of some acylglycines and related oxazolones

    Get PDF
    No description supplie

    An open platform for rapid-prototyping protection and control schemes with IEC 61850

    Get PDF
    Communications is becoming increasingly important to the operation of protection and control schemes. Although offering many benefits, using standards-based communications, particularly IEC 61850, in the course of the research and development of novel schemes can be complex. This paper describes an open-source platform which enables the rapid prototyping of communications-enhanced schemes. The platform automatically generates the data model and communications code required for an intelligent electronic device to implement a publisher-subscriber generic object-oriented substation event and sampled-value messaging. The generated code is tailored to a particular system configuration description (SCD) file, and is therefore extremely efficient at runtime. It is shown here how a model-centric tool, such as the open-source Eclipse Modeling Framework, can be used to manage the complexity of the IEC 61850 standard, by providing a framework for validating SCD files and by automating parts of the code generation process. The flexibility and convenience of the platform are demonstrated through a prototype of a real-time, fast-acting load-shedding scheme for a low-voltage microgrid network. The platform is the first open-source implementation of IEC 61850 which is suitable for real-time applications, such as protection, and is therefore readily available for research and education

    Comparative Monte Carlo Efficiency by Monte Carlo Analysis

    Full text link
    We propose a modified power method for computing the subdominant eigenvalue λ2\lambda_2 of a matrix or continuous operator. Here we focus on defining simple Monte Carlo methods for its application. The methods presented use random walkers of mixed signs to represent the subdominant eigenfuction. Accordingly, the methods must cancel these signs properly in order to sample this eigenfunction faithfully. We present a simple procedure to solve this sign problem and then test our Monte Carlo methods by computing the λ2\lambda_2 of various Markov chain transition matrices. We first computed λ2{\lambda_2} for several one and two dimensional Ising models, which have a discrete phase space, and compared the relative efficiencies of the Metropolis and heat-bath algorithms as a function of temperature and applied magnetic field. Next, we computed λ2\lambda_2 for a model of an interacting gas trapped by a harmonic potential, which has a mutidimensional continuous phase space, and studied the efficiency of the Metropolis algorithm as a function of temperature and the maximum allowable step size Δ\Delta. Based on the λ2\lambda_2 criterion, we found for the Ising models that small lattices appear to give an adequate picture of comparative efficiency and that the heat-bath algorithm is more efficient than the Metropolis algorithm only at low temperatures where both algorithms are inefficient. For the harmonic trap problem, we found that the traditional rule-of-thumb of adjusting Δ\Delta so the Metropolis acceptance rate is around 50% range is often sub-optimal. In general, as a function of temperature or Δ\Delta, λ2\lambda_2 for this model displayed trends defining optimal efficiency that the acceptance ratio does not. The cases studied also suggested that Monte Carlo simulations for a continuum model are likely more efficient than those for a discretized version of the model.Comment: 23 pages, 8 figure

    Union membership and charitable giving in the United States

    Get PDF
    Using U.S. panel data from 2001-2011, the authors examine general differences in charitable giving between union members, free-riders, and the nonunionized. Results indicate that union members are more likely to give and to give more to charity relative to the nonunionized, whereas free-riders are the least generous. Similar effects are found when examining the question of who joins a union or who becomes a free-rider: joining a union positively affects charitable giving, while becoming a free-rider makes individuals' behavior less charitable. Evidence also suggests that the positive effect of union membership on giving does not diminish over time. Taken together, these results provide new evidence that union membership generates civic engagement in the form of charitable behavior; results also suggest the need to further investigate the civic behavior of free-riders

    Synthesis of hetero-bifunctional, end-capped oligo-EDOT derivatives

    Get PDF
    Conjugated oligomers of 3,4-ethylenedioxythiophene (EDOT) are attractive materials for tissue engineering applications, and as model systems for studying the properties of the widely used polymer PEDOT. We report here the facile synthesis of a series of keto-acid end-capped oligo-EDOT derivatives (n = 2-7) through a combination of a glyoxylation end capping strategy and iterative direct arylation chain extension. Importantly, these structures not only represent the longest oligo-EDOTs reported, but are also bench stable in contrast to previous reports on such oligomers. The constructs reported here can undergo subsequent derivatization for integration into higher order architectures, such as those required for tissue engineering applications. The synthesis of hetero-bifunctional constructs, as well as those containing mixed monomer units is also reported, allowing further complexity to be installed in a controlled manner. Finally, we describe the optical and electrochemical properties of these oligomers and demonstrate the importance of the keto-acid in determining their characteristics

    Optimized Coplanar Waveguide Resonators for a Superconductor-Atom Interface

    Get PDF
    We describe the design and characterization of superconducting coplanar waveguide cavities tailored to facilitate strong coupling between superconducting quantum circuits and single trapped Rydberg atoms. For initial superconductor-atom experiments at 4.2 K, we show that resonator quality factors above 10410^4 can be readily achieved. Furthermore, we demonstrate that the incorporation of thick-film copper electrodes at a voltage antinode of the resonator provides a route to enhance the zero-point electric fields of the resonator in a trapping region that is 40 μ\mum above the chip surface, thereby minimizing chip heating from scattered trap light. The combination of high resonator quality factor and strong electric dipole coupling between the resonator and the atom should make it possible to achieve the strong coupling limit of cavity quantum electrodynamics with this system.Comment: 4 pages, 4 figure

    Explaining anomalous responses to treatment in the Intensive Care Unit

    Get PDF
    The Intensive Care Unit (ICU) provides treatment to critically ill patients. When a patient does not respond as expected to such treatment it can be challenging for clinicians, especially junior clinicians, as they may not have the relevant experience to understand the patient’s anomalous response. Datasets for 10 patients from Glasgow Royal Infirmary’s ICU have been made available to us. We asked several ICU clinicians to review these datasets and to suggest sequences which include anomalous or unusual reactions to treatment. Further, we then asked two ICU clinicians if they agreed with their colleagues’ assessments, and if they did to provide possible explanations for these anomalous sequences. Subsequently we have developed a system which is able to replicate the clinicians’ explanations based on the knowledge contained in its several ontologies; further the system can suggest additional explanations which will be evaluated by the senior consultant
    corecore