10,841 research outputs found

    Shuttle GPS R/PA evaluation analysis and performance tradeoff study

    Get PDF
    Primary responsibility was understanding and analyzing the various GPS receiver functions as they relate to the shuttle environment. These receiver functions included acquisition properties of the sequential detector, acquisition and tracking properties of the various receiver phase locked loops, and the techniques of sequential receiver operation. In addition to these areas, support was provided in the areas of oscillator stability requirements, antenna management, and navigation filter requirements, including preposition aiding

    Shuttle GPS R/PA configuration and specification study

    Get PDF
    Changes in the technical specifications for a global positioning system (GPS) receiving system dedicated to space shuttle use are presented. Various hardware functions including acquisition, tracking, and measurement are emphasized. The anti-jam performance of the baseline GPS systems are evaluated. Other topics addressed include: the impact on R/PA design of the use of ground based transmitters; problems involved with the use of single channel tests sets; utility of various R/PA antenna interconnections topologies; the choice of the averaging interval for delta range measurements; and the use of interferometry techniques for the computation of orbiter attitude were undertaken

    SPS phase control system performance via analytical simulation

    Get PDF
    A solar power satellite transmission system which incorporates automatic beam forming, steering, and phase control is discussed. The phase control concept centers around the notation of an active retrodirective phased array as a means of pointing the beam to the appropriate spot on Earth. The transmitting antenna (spacetenna) directs the high power beam so that it focuses on the ground-based receiving antenna (rectenna). A combination of analysis and computerized simulation was conducted to determine the far field performance of the reference distribution system, and the beam forming and microwave power generating systems

    Self-contained Kondo effect in single molecules

    Full text link
    Kondo coupling of f and conduction electrons is a common feature of f-electron intermetallics. Similar effects should occur in carbon ring systems(metallocenes). Evidence for Kondo coupling in Ce(C8H8)2 (cerocene) and the ytterbocene Cp*2Yb(bipy) is reported from magnetic susceptibility and L_III-edge x-ray absorption spectroscopy. These well-defined systems provide a new way to study the Kondo effect on the nanoscale, should generate insight into the Anderson Lattice problem, and indicate the importance of this often-ignored contribution to bonding in organometallics.Comment: 4 pages, 5 figures (eps

    Horizon energy and angular momentum from a Hamiltonian perspective

    Full text link
    Classical black holes and event horizons are highly non-local objects, defined in terms of the causal past of future null infinity. Alternative, (quasi)local definitions are often used in mathematical, quantum, and numerical relativity. These include apparent, trapping, isolated, and dynamical horizons, all of which are closely associated to two-surfaces of zero outward null expansion. In this paper we show that three-surfaces which can be foliated with such two-surfaces are suitable boundaries in both a quasilocal action and a phase space formulation of general relativity. The resulting formalism provides expressions for the quasilocal energy and angular momentum associated with the horizon. The values of the energy and angular momentum are in agreement with those derived from the isolated and dynamical horizon frameworks.Comment: 39 pages, 3 figures, Final Version : content essentially unchanged but many small improvements made in response to referees, a few references adde

    Classical dynamics and stability of collapsing thick shells of matter

    Full text link
    We study the collapse towards the gravitational radius of a macroscopic spherical thick shell surrounding an inner massive core. This overall electrically neutral macroshell is composed by many nested delta-like massive microshells which can bear non-zero electric charge, and a possibly non-zero cosmological constant is also included. The dynamics of the shells is described by means of Israel's (Lanczos) junction conditions for singular hypersurfaces and, adopting a Hartree (mean field) approach, an effective Hamiltonian for the motion of each microshell is derived which allows to check the stability of the matter composing the macroshell. We end by briefly commenting on the quantum effects which may arise from the extension of our classical treatment to the semiclassical level.Comment: 16 pages in IOP style, 8 figures, accepted for publication in Class. Quantum Gra

    Are there asymmetries in the effects of training on the conditional male wage distribution?

    Get PDF
    Recent studies have used quantile regression (QR) techniques to estimate the impact of education on the location, scale and shape of the conditional wage distribution. In our paper we investigate the degree to which work-related training – another important form of human capital – affects the location, scale and shape of the conditional wage distribution. Using the first six waves of the European Community Household Panel, we utilise both ordinary least squares and QR techniques to estimate associations between work-related training and wages for private sector men in ten European Union countries. Our results show that, for the majority of countries, there is a fairly uniform association between training and hourly wages across the conditional wage distribution. However, there are considerable differences across countries in mean associations between training and wages

    Quantifying structural damage from self-irradiation in a plutonium superconductor

    Full text link
    The 18.5 K superconductor PuCoGa5 has many unusual properties, including those due to damage induced by self-irradiation. The superconducting transition temperature decreases sharply with time, suggesting a radiation-induced Frenkel defect concentration much larger than predicted by current radiation damage theories. Extended x-ray absorption fine-structure measurements demonstrate that while the local crystal structure in fresh material is well ordered, aged material is disordered much more strongly than expected from simple defects, consistent with strong disorder throughout the damage cascade region. These data highlight the potential impact of local lattice distortions relative to defects on the properties of irradiated materials and underscore the need for more atomic-resolution structural comparisons between radiation damage experiments and theory.Comment: 7 pages, 5 figures, to be published in PR

    Complex Instantons and Charged Rotating Black Hole Pair Creation

    Get PDF
    We consider the general process of pair-creation of charged rotating black holes. We find that instantons which describe this process are necessarily complex due to regularity requirements. However their associated probabilities are real, and fully consistent with the interpretation that the entropy of a charged rotating black hole is the logarithm of the number of its quantum states.Comment: 11 pages, 1 figure, Latex, text shortened with only minor changes in content, accepted for Phys Rev Letter
    • …
    corecore