120 research outputs found

    Modelling the impact of treatment uncertainties in radiotherapy

    Get PDF
    Uncertainties are inevitably part of the radiotherapy process. Uncertainty in the dose deposited in the tumour exists due to organ motion, patient positioning errors, fluctuations in machine output, delineation of regions of interest, the modality of imaging used, and treatment planning algorithm assumptions among others; there is uncertainty in the dose required to eradicate a tumour due to interpatient variations in patient-specific variables such as their sensitivity to radiation; and there is uncertainty in the dose-volume restraints that limit dose to normal tissue. This thesis involves three major streams of research including investigation of the actual dose delivered to target and normal tissue, the effect of dose uncertainty on radiobiological indices, and techniques to display the dose uncertainty in a treatment planning system. All of the analyses are performed with the dose distribution from a four-field box treatment using 6 MV photons. The treatment fields include uniform margins between the clinical target volume and planning target volume of 0.5 cm, 1.0 cm, and 1.5 cm. The major work is preceded by a thorough literature review on the size of setup and organ motion errors for various organs and setup techniques used in radiotherapy. A Monte Carlo (MC) code was written to simulate both the treatment planning and delivery phases of the radiotherapy treatment. Using MC, the mean and the variation in treatment dose are calculated for both an individual patient and across a population of patients. In particular, the possible discrepancy in tumour position located from a single CT scan and the magnitude of reduction in dose variation following multiple CT scans is investigated. A novel convolution kernel to include multiple pretreatment CT scans in the calculation of mean treatment dose is derived. Variations in dose deposited to prostate and rectal wall are assessed for each of the margins and for various magnitudes of systematic and random error, and penumbra gradients. The linear quadratic model is used to calculate prostate Tumour Control Probability (TCP) incorporating an actual (modelled) delivered prostate dose. The Kallman s-model is used to calculate the normal tissue complication probability (NTCP), incorporating actual (modelled) fraction dose in the deforming rectal wall. The impact of each treatment uncertainty on the variation in the radiobiological index is calculated for the margin sizes.Thesis (Ph.D.)--Department of Physics and Mathematical Physics, 2002

    The interaction of human and Epstein–Barr virus miRNAs with Multiple Sclerosis risk loci

    Get PDF
    Although the causes of Multiple Sclerosis (MS) still remain largely unknown, multiple lines of evidence suggest that Epstein–Barr virus (EBV) infection may contribute to the development of MS. Here, we aimed to identify the potential contribution of EBV-encoded and host cellular miRNAs to MS pathogenesis. We identified differentially expressed host miRNAs in EBV infected B cells (LCLs) and putative host/EBV miRNA interactions with MS risk loci. We estimated the genotype effect of MS risk loci on the identified putative miRNA:mRNA interactions in silico. We found that the protective allele of MS risk SNP rs4808760 reduces the expression of hsa-mir-3188-3p. In addition, our analysis suggests that hsa-let-7b-5p may interact with ZC3HAV1 differently in LCLs compared to B cells. In vitro assays indicated that the protective allele of MS risk SNP rs10271373 increases ZC3HAV1 expression in LCLs, but not in B cells. The higher expression for the protective allele in LCLs is consistent with increased IFN response via ZC3HAV1 and so decreased immune evasion by EBV. Taken together, this provides evidence that EBV infection dysregulates the B cell miRNA machinery, including MS risk miRNAs, which may contribute to MS pathogenesis via interaction with MS risk genes either directly or indirectly

    A hazard model of the probability of medical school dropout in the United Kingdom

    Get PDF
    From individual level longitudinal data for two entire cohorts of medical students in UK universities, we use multilevel models to analyse the probability that an individual student will drop out of medical school. We find that academic preparedness—both in terms of previous subjects studied and levels of attainment therein—is the major influence on withdrawal by medical students. Additionally, males and more mature students are more likely to withdraw than females or younger students respectively. We find evidence that the factors influencing the decision to transfer course differ from those affecting the decision to drop out for other reasons

    Between-Monitor Differences in Step Counts Are Related to Body Size: Implications for Objective Physical Activity Measurement

    Get PDF
    The quantification of the relationships between walking and health requires that walking is measured accurately. We correlated different measures of step accumulation to body size, overall physical activity level, and glucose regulation.Participants were 25 men and 25 women American Indians without diabetes (Age: 20-34 years) in Phoenix, Arizona, USA. We assessed steps/day during 7 days of free living, simultaneously with three different monitors (Accusplit-AX120, MTI-ActiGraph, and Dynastream-AMP). We assessed total physical activity during free-living with doubly labeled water combined with resting metabolic rate measured by expired gas indirect calorimetry. Glucose tolerance was determined during an oral glucose tolerance test.Based on observed counts in the laboratory, the AMP was the most accurate device, followed by the MTI and the AX120, respectively. The estimated energy cost of 1000 steps per day was lower in the AX120 than the MTI or AMP. The correlation between AX120-assessed steps/day and waist circumference was significantly higher than the correlation between AMP steps and waist circumference. The difference in steps per day between the AX120 and both the AMP and the MTI were significantly related to waist circumference.Between-monitor differences in step counts influence the observed relationship between walking and obesity-related traits

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Episodic Memory and Appetite Regulation in Humans

    Get PDF
    Psychological and neurobiological evidence implicates hippocampal-dependent memory processes in the control of hunger and food intake. In humans, these have been revealed in the hyperphagia that is associated with amnesia. However, it remains unclear whether 'memory for recent eating' plays a significant role in neurologically intact humans. In this study we isolated the extent to which memory for a recently consumed meal influences hunger and fullness over a three-hour period. Before lunch, half of our volunteers were shown 300 ml of soup and half were shown 500 ml. Orthogonal to this, half consumed 300 ml and half consumed 500 ml. This process yielded four separate groups (25 volunteers in each). Independent manipulation of the 'actual' and 'perceived' soup portion was achieved using a computer-controlled peristaltic pump. This was designed to either refill or draw soup from a soup bowl in a covert manner. Immediately after lunch, self-reported hunger was influenced by the actual and not the perceived amount of soup consumed. However, two and three hours after meal termination this pattern was reversed - hunger was predicted by the perceived amount and not the actual amount. Participants who thought they had consumed the larger 500-ml portion reported significantly less hunger. This was also associated with an increase in the 'expected satiation' of the soup 24-hours later. For the first time, this manipulation exposes the independent and important contribution of memory processes to satiety. Opportunities exist to capitalise on this finding to reduce energy intake in humans

    Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics

    Get PDF
    The assessment of oocyte quality in human in vitro fertilization (IVF) is getting increasing attention from embryologists. Oocyte selection and the identification of the best oocytes, in fact, would help to limit embryo overproduction and to improve the results of oocyte cryostorage programs. Follicular fluid (FF) is easily available during oocyte pick-up and theorically represents an optimal source on non-invasive biochemical predictors of oocyte quality. Unfortunately, however, the studies aiming to find a good molecular predictor of oocyte quality in FF were not able to identify substances that could be used as reliable markers of oocyte competence to fertilization, embryo development and pregnancy. In the last years, a well definite trend toward passing from the research of single molecular markers to more complex techniques that study all metabolites of FF has been observed. The metabolomic approach is a powerful tool to study biochemical predictors of oocyte quality in FF, but its application in this area is still at the beginning. This review provides an overview of the current knowledge about the biochemical predictors of oocyte quality in FF, describing both the results coming from studies on single biochemical markers and those deriving from the most recent studies of metabolomic

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information about HabEx can be found here: https://www.jpl.nasa.gov/habex
    corecore