168 research outputs found

    Molecular Line Emission from Planet-Forming Disks with ALMA

    Get PDF
    The physical and chemical conditions in the protoplanetary disk set the initial conditions for planet formation. Constraining the properties of disks is of key importance for understanding how planets assemble. Observations of molecular lines in disks provide valuable information on disk properties. This thesis presents ALMA observations, analysis and modelling of molecular line emission from four disks that all exhibit evidence for forming planets. Using the first-ever observations of 13C17O in protoplanetary disks, the CO gas mass of the HD 163296 and HL Tau disks are robustly constrained. The new masses are a factor of 2-10 times higher than existing estimates using C18O, and highlight the potential gravitational instability of the HL Tau disk. Analysis of the radial distribution of HCO+ and H13CO+ in the HD 97048 disk reveals a low ratio that can be explained via chemical fractionation. This indicates that the gas temperature in the outer disk is low (approx. 10 K) despite this disk being hosted by an A-type star. Both silicon and sulphur bearing volatiles are observed to be significantly depleted in disks, similar to dark clouds. Multiple lines of SO and SiO are targeted towards HD 100546 and HD 97048. The detection of the shock tracer SO in the HD 100546 disk is attributed to either a disk wind or a circumplanetary disk. Complementary chemical modelling reveals the molecular carriers of S and Si in the two sources, and predicts SiS as tracer of S and Si in disks. This thesis shows that 13C17O is a robust tracer of disk gas mass, HCO+ isotopologue emission may trace reservoirs of cold gas in typically warm disks, and Si and S bearing molecules are useful probes of shock induced structures such as circumplanetary disks

    SO and SiS Emission Tracing an Embedded Planet and Compact 12^{12}CO and 13^{13}CO Counterparts in the HD 169142 Disk

    Get PDF
    Planets form in dusty, gas-rich disks around young stars, while at the same time, the planet formation process alters the physical and chemical structure of the disk itself. Embedded planets will locally heat the disk and sublimate volatile-rich ices, or in extreme cases, result in shocks that sputter heavy atoms such as Si from dust grains. This should cause chemical asymmetries detectable in molecular gas observations. Using high-angular-resolution ALMA archival data of the HD 169142 disk, we identify compact SO J=88_8-77_7 and SiS J=19-18 emission coincident with the position of a ∼{\sim}2 MJup_{\rm{Jup}} planet seen as a localized, Keplerian NIR feature within a gas-depleted, annular dust gap at ≈{\approx}38 au. The SiS emission is located along an azimuthal arc and has a similar morphology as a known 12^{12}CO kinematic excess. This is the first tentative detection of SiS emission in a protoplanetary disk and suggests that the planet is driving sufficiently strong shocks to produce gas-phase SiS. We also report the discovery of compact 12^{12}CO and 13^{13}CO J=3-2 emission coincident with the planet location. Taken together, a planet-driven outflow provides the best explanation for the properties of the observed chemical asymmetries. We also resolve a bright, azimuthally-asymmetric SO ring at ≈{\approx}24 au. While most of this SO emission originates from ice sublimation, its asymmetric distribution implies azimuthal temperature variations driven by a misaligned inner disk or planet-disk interactions. Overall, the HD 169142 disk shows several distinct chemical signatures related to giant planet formation and presents a powerful template for future searches of planet-related chemical asymmetries in protoplanetary disks.Comment: 22 pages, 12 figures, accepted for publication in ApJ

    Tracing snowlines and C/O ratio in a planet-hosting disk: ALMA molecular line observations towards the HD169142 disk

    Full text link
    The composition of a forming planet is set by the material it accretes from its parent protoplanetary disk. Therefore, it is crucial to map the chemical make-up of the gas in disks to understand the chemical environment of planet formation. This paper presents molecular line observations taken with the Atacama Large Millimeter/submillimeter Array of the planet-hosting disk around the young star HD 169142. We detect N2H+, CH3OH, [CI], DCN, CS, C34S, 13CS, H2CS, H2CO, HC3N and c-C3H2 in this system for the first time. Combining these data with the recent detection of SO and previously published DCO+ data, we estimate the location of H2O and CO snowlines and investigate radial variations in the gas phase C/O ratio. We find that the HD 169142 disk has a relatively low N2H+ flux compared to the disks around Herbig stars HD 163296 and MWC 480 indicating less CO freeze-out and place the CO snowline beyond the millimetre disk at ~150 au. The detection of CH3OH from the inner disk is consistent with the H2O snowline being located at the edge of the central dust cavity at ~20 au. The radially varying CS/SO ratio across the proposed H2O snowline location is consistent with this interpretation. Additionally, the detection of CH3OH in such a warm disk adds to the growing evidence supporting the inheritance of complex ices in disks from the earlier, colder stages of star formation. Finally, we propose that the giant HD 169142 b located at 37 au is forming between the CO2 and H2O snowlines where the local elemental make of the gas is expected to have C/O=1.0.Comment: Accepted A&A 13th August 202

    Investigating the asymmetric chemistry in the disk around the young star HD 142527

    Get PDF
    The atmospheric composition of planets is determined by the chemistry of the disks in which they form. Studying the gas-phase molecular composition of disks thus allows us to infer what the atmospheric composition of forming planets might be. Recent observations of the IRS 48 disk have shown that (asymmetric) dust traps can directly impact the observable chemistry, through radial and vertical transport, and the sublimation of ices. The asymmetric HD 142527 disk provides another good opportunity to investigate the role of dust traps in setting the disk's chemical composition. In this work, we use archival ALMA observations of the HD 142527 disk to obtain an as large as possible molecular inventory, which allows us to investigate the possible influence of the asymmetric dust trap on the disk's chemistry. We present the first ALMA detections of [C I], 13C18O, DCO+, H2CO and additional transition of HCO+ and CS in this disk. In addition, we have acquired upper limits for non-detected species such as SO and CH3OH. For the majority of the observed molecules, a decrement in the emission at the location of the dust trap is found. For the main CO isotopologues continuum over-subtraction likely causes the observed asymmetry, while for CS and HCN we propose that the observed asymmetries are likely due to shadows cast by the misaligned inner disk. As the emission of the observed molecules is not co-spatial with the dust trap and no SO or CH3OH are found, thermal sublimation of icy mantles does not appear to play a major role in changing the gas-phase composition of the outer disk in HD 142527 disk. Using our observations of 13C18O and DCO+ and a RADMC-3D model, we determine the CO snowline to be located beyond the dust traps, favouring cold gas-phase formation of H2CO, rather than the hydrogenation of CO-ice and subsequent sublimation.Comment: Accepted for publication in A&A on 12/04/202

    Resolved Debris Discs Around A Stars in the Herschel DEBRIS Survey

    Full text link
    The majority of debris discs discovered so far have only been detected through infrared excess emission above stellar photospheres. While disc properties can be inferred from unresolved photometry alone under various assumptions for the physical properties of dust grains, there is a degeneracy between disc radius and dust temperature that depends on the grain size distribution and optical properties. By resolving the disc we can measure the actual location of the dust. The launch of Herschel, with an angular resolution superior to previous far-infrared telescopes, allows us to spatially resolve more discs and locate the dust directly. Here we present the nine resolved discs around A stars between 20 and 40 pc observed by the DEBRIS survey. We use these data to investigate the disc radii by fitting narrow ring models to images at 70, 100 and 160 {\mu}m and by fitting blackbodies to full spectral energy distributions. We do this with the aim of finding an improved way of estimating disc radii for unresolved systems. The ratio between the resolved and blackbody radii varies between 1 and 2.5. This ratio is inversely correlated with luminosity and any remaining discrepancies are most likely explained by differences to the minimum size of grain in the size distribution or differences in composition. We find that three of the systems are well fit by a narrow ring, two systems are borderline cases and the other four likely require wider or multiple rings to fully explain the observations, reflecting the diversity of planetary systems.Comment: 19 pages, 13 figures, 6 tables. Accepted for publication in MNRA

    The debris disk around gamma Doradus resolved with Herschel

    Full text link
    We present observations of the debris disk around gamma Doradus, an F1V star, from the Herschel Key Programme DEBRIS (Disc Emission via Bias-free Reconnaissance in the Infrared/Submillimetre). The disk is well-resolved at 70, 100 and 160 micron, resolved along its major axis at 250 micron, detected but not resolved at 350 micron, and confused with a background source at 500 micron. It is one of our best resolved targets and we find it to have a radially broad dust distribution. The modelling of the resolved images cannot distinguish between two configurations: an arrangement of a warm inner ring at several AU (best-fit 4 AU) and a cool outer belt extending from ~55 to 400 AU or an arrangement of two cool, narrow rings at ~70 AU and ~190 AU. This suggests that any configuration between these two is also possible. Both models have a total fractional luminosity of ~10^{-5} and are consistent with the disk being aligned with the stellar equator. The inner edge of either possible configuration suggests that the most likely region to find planets in this system would be within ~55 AU of the star. A transient event is not needed to explain the warm dust's fractional luminosity.Comment: 12 pages, 6 figures, accepted for publication in Ap

    Azimuthal C/O variations in a planet-forming disk

    Get PDF
    The elemental carbon-to-oxygen ratio (C/O) in the atmosphere of a giant planet is a promising diagnostic of that planet’s formation history in a protoplanetary disk. Alongside efforts in the exoplanet community to measure the C/O ratio in planetary atmospheres, observational and theoretical studies of disks are increasingly focused on understanding how the gas-phase C/O ratio varies both with radial location and between disks. This is mostly tied to the icelines of major volatile carriers such as CO and H2O. Using ALMA observations of CS and SO, we have found evidence for an entirely unexpected type of C/O variation in the protoplanetary disk around HD 100546: an azimuthal variation from a typical, oxygen-dominated ratio (C/O ≈ 0.5) to a carbon-dominated ratio (C/O ≳ 1.0). We show that the spatial distribution and peculiar line kinematics of both CS and SO molecules can be well explained by azimuthal variations in the C/O ratio. We propose a shadowing mechanism that could lead to such a chemical dichotomy. Our results imply that tracing the formation history of giant exoplanets using their atmospheric C/O ratios will need to take into account time-dependent azimuthal C/O variations in a planet’s accretion zone

    An ALMA molecular inventory of warm Herbig Ae disks: I. Molecular rings, asymmetries and complexity in the HD 100546 disk

    Full text link
    Observations of disks with the Atacama Large Millimeter/submillimeter Array (ALMA) allow us to map the chemical makeup of nearby protoplanetary disks with unprecedented spatial resolution and sensitivity. The typical outer Class II disk observed with ALMA is one with an elevated C/O ratio and a lack of oxygen-bearing complex organic molecules, but there are now some interesting exceptions: three transition disks around Herbig Ae stars all show oxygen-rich gas traced via the unique detections of the molecules SO and CH3OH. We present the first results of an ALMA line survey at 337 to 357 GHz of such disks and focus this paper on the first Herbig Ae disk to exhibit this chemical signature - HD 100546. In these data, we detect 19 different molecules including NO, SO and CH3OCHO (methyl formate). We also make the first tentative detections of H213CO and 34SO in protoplanetary disks. Multiple molecular species are detected in rings, which are, surprisingly, all peaking just beyond the underlying millimeter continuum ring at 200 au. This result demonstrates a clear connection between the large dust distribution and the chemistry in this flat outer disk. We discuss the physical and/or chemical origin of these sub-structures in relation to ongoing planet formation in the HD 100546 disk. We also investigate how similar and/or different the molecular make up of this disk is to other chemically well-characterised Herbig Ae disks. The line-rich data we present motivates the need for more ALMA line surveys to probe the observable chemistry in Herbig Ae systems which offer unique insight into the composition of disk ices, including complex organic molecules.Comment: Accepted to AJ, 25 pages, 11 figure

    An ALMA molecular inventory of warm Herbig Ae disks: II. Abundant complex organics and volatile sulphur in the IRS 48 disk

    Full text link
    The Atacama Large Millimeter/submillimeter Array (ALMA) can probe the molecular content of planet-forming disks with unprecedented sensitivity. These observations allow us to build up an inventory of the volatiles available for forming planets and comets. Herbig Ae transition disks are fruitful targets due to the thermal sublimation of complex organic molecule (COM) and likely H2O-rich ices in these disks. The IRS 48 disk shows a particularly rich chemistry that can be directly linked to its asymmetric dust trap. Here, we present ALMA observations of the IRS 48 disk where we detect 16 different molecules and make the first robust detections of H213CO, 34SO, 33SO and c-H2COCH2 (ethylene oxide) in a protoplanetary disk. All of the molecular emissions, aside from CO, are colocated with the dust trap and this includes newly detected simple molecules such as HCO+, HCN and CS. Interestingly, there are spatial offsets between different molecular families, including between the COMs and sulphur-bearing species, with the latter being more azimuthally extended and located radially further from the star. The abundances of the newly detected COMs relative to CH3OH are higher than the expected protostellar ratios, which implies some degree of chemical processing of the inherited ices during the disk lifetime. These data highlight IRS 48 as a unique astrochemical laboratory to unravel the full volatile reservoir at the epoch of planet and comet formation and the role of the disk in (re)setting chemical complexity.Comment: Accepted to AJ, 21 pages, 7 figure
    • …
    corecore