199 research outputs found

    Sharing and Preserving Computational Analyses for Posterity with encapsulator

    Get PDF
    Open data and open-source software may be part of the solution to science's "reproducibility crisis", but they are insufficient to guarantee reproducibility. Requiring minimal end-user expertise, encapsulator creates a "time capsule" with reproducible code in a self-contained computational environment. encapsulator provides end-users with a fully-featured desktop environment for reproducible research.Comment: 11 pages, 6 figure

    Equation of state of a strongly magnetized hydrogen plasma

    Get PDF
    The influence of a constant uniform magnetic field on the thermodynamic properties of a partially ionized hydrogen plasma is studied. Using the method of Green' s function various interaction contributions to the thermodynamic functions are calculated. The equation of state of a quantum magnetized plasma is presented within the framework of a low density expansion up to the order e^4 n^2 and, additionally, including ladder type contributions via the bound states in the case of strong magnetic fields (2.35*10^{5} T << B << 2.35*10^{9} T). We show that for high densities (n=10^{27-30} m^{-3}) and temperatures T=10^5 - 10^6 K typical for the surface of neutron stars nonideality effects as, e.g., Debye screening must be taken into account.Comment: 12 pages, 2 Postscript figures. uses revtex, to appear in Phys. Rev.

    Semiclassical cross section correlations

    Full text link
    We calculate within a semiclassical approximation the autocorrelation function of cross sections. The starting point is the semiclassical expression for the diagonal matrix elements of an operator. For general operators with a smooth classical limit the autocorrelation function of such matrix elements has two contributions with relative weights determined by classical dynamics. We show how the random matrix result can be obtained if the operator approaches a projector onto a single initial state. The expressions are verified in calculations for the kicked rotor.Comment: 6 pages, 2 figure

    Microphysical and thermodynamic phase analyses of Arctic low-level clouds measured above the sea ice and the open ocean in spring and summer

    Get PDF
    Abstract. Airborne in situ cloud measurements were carried out over the northern Fram Strait between Greenland and Svalbard in spring 2019 and summer 2020. In total, 811 min of low-level cloud observations were performed during 20 research flights above the sea ice and the open Arctic ocean with the Polar 5 research aircraft of the Alfred Wegener Institute. Here, we combine the comprehensive in situ cloud data to investigate the distributions of particle number concentration N, effective diameter Deff, and cloud water content CWC (liquid and ice) of Arctic clouds below 500 m altitude, measured at latitudes between 76 and 83∘ N. We developed a method to quantitatively derive the occurrence probability of their thermodynamic phase from the combination of microphysical cloud probe and Polar Nephelometer data. Finally, we assess changes in cloud microphysics and cloud phase related to ambient meteorological conditions in spring and summer and address effects of the sea ice and open-ocean surface conditions. We find median N from 0.2 to 51.7 cm−3 and about 2 orders of magnitude higher N for mainly liquid clouds in summer compared to ice and mixed-phase clouds measured in spring. A southerly flow from the sea ice in cold air outbreaks dominates cloud formation processes at temperatures mostly below −10 ∘C in spring, while northerly warm air intrusions favor the formation of liquid clouds at warmer temperatures in summer. Our results show slightly higher N in clouds over the sea ice compared to the open ocean, indicating enhanced cloud formation processes over the sea ice. The median CWC is higher in summer (0.16 g m−3) than in spring (0.06 g m−3), as this is dominated by the available atmospheric water content and the temperatures at cloud formation level. We find large differences in the particle sizes in spring and summer and an impact of the surface conditions, which modifies the heat and moisture fluxes in the boundary layer. By combining microphysical cloud data with thermodynamic phase information from the Polar Nephelometer, we find mixed-phase clouds to be the dominant thermodynamic cloud phase in spring, with a frequency of occurrence of 61 % over the sea ice and 66 % over the ocean. Pure ice clouds exist almost exclusively over the open ocean in spring, and in summer the cloud particles are most likely in the liquid water state. The comprehensive low-level cloud data set will help us to better understand the role of clouds and their thermodynamic phase in the Arctic radiation budget and to assess the performance of global climate models in a region of the world with the strongest anthropogenic climate change. </jats:p

    Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance

    Get PDF
    Seven different instruments and measurement methods were used to examine the immersion freezing of bacterial ice nuclei from Snomax® (hereafter Snomax), a product containing ice-active protein complexes from non-viable Pseudomonas syringae bacteria. The experimental conditions were kept as similar as possible for the different measurements. Of the participating instruments, some examined droplets which had been made from suspensions directly, and the others examined droplets activated on previously generated Snomax particles, with particle diameters of mostly a few hundred nanometers and up to a few micrometers in some cases. Data were obtained in the temperature range from -2 to -38 °C, and it was found that all ice-active protein complexes were already activated above -12 °C. Droplets with different Snomax mass concentrations covering 10 orders of magnitude were examined. Some instruments had very short ice nucleation times down to below 1 s, while others had comparably slow cooling rates around 1 K min-1. Displaying data from the different instruments in terms of numbers of ice-active protein complexes per dry mass of Snomax, nm, showed that within their uncertainty, the data agree well with each other as well as to previously reported literature results. Two parameterizations were taken from literature for a direct comparison to our results, and these were a time-dependent approach based on a contact angle distribution (Niedermeier et al., 2014) and a modification of the parameterization presented in Hartmann et al. (2013) representing a time-independent approach. The agreement between these and the measured data were good; i.e., they agreed within a temperature range of 0.6 K or equivalently a range in nm of a factor of 2. From the results presented herein, we propose that Snomax, at least when carefully shared and prepared, is a suitable material to test and compare different instruments for their accuracy of measuring immersion freezing

    Ice nucleating particles in the Saharan Air Layer

    Get PDF
    This study aims at quantifying the ice nucleation properties of desert dust in the Saharan Air Layer (SAL), the warm, dry and dust-laden layer that expands from North Africa to the Americas. By measuring close to the dust’s emission source, before aging processes during the transatlantic advection potentially modify the dust properties, the study fills a gap between in situ measurements of dust ice nucleating particles (INPs) far away from the Sahara and laboratory studies of ground-collected soil. Two months of online INP concentration measurements are presented, which were part of the two CALIMA campaigns at the Izaña observatory in Tenerife, Spain (2373ma.s.l.), in the summers of 2013 and 2014. INP concentrations were measured in the deposition and condensation mode at temperatures between 233 and 253K with the Portable Ice Nucleation Chamber (PINC). Additional aerosol information such as bulk chemical composition, concentration of fluorescent biological particles as well as the particle size distribution was used to investigate observed variations in the INP concentration. The concentration of INPs was found to range between 0.2 std L−1^{-1} in the deposition mode and up to 2500 std L−1^{-1} in the condensation mode at 240 K. It correlates well with the abundance of aluminum, iron, magnesium and manganese (R: 0.43–0.67) and less with that of calcium, sodium or carbonate. These observations are consistent with earlier results from laboratory studies which showed a higher ice nucleation efficiency of certain feldspar and clay minerals compared to other types of mineral dust. We find that an increase of ammonium sulfate, linked to anthropogenic emissions in upwind distant anthropogenic sources, mixed with the desert dust has a small positive effect on the condensation mode INP per dust mass ratio but no effect on the deposition mode INP. Furthermore, the relative abundance of biological particles was found to be significantly higher in INPs compared to the ambient aerosol. Overall, this suggests that atmospheric aging processes in the SAL can lead to an increase in ice nucleation ability of mineral dust from the Sahara. INP concentrations predicted with two common parameterization schemes, which were derived mostly from atmospheric measurements far away from the Sahara but influenced by Asian and Saharan dust, were found to be higher based on the aerosol load than we observed in the SAL, further suggesting aging effects of INPs in the SAL
    • …
    corecore