140 research outputs found

    Long-term follow-up of retinal degenerations associated with LRAT mutations and their comparability to phenotypes associated with RPE65 mutations

    Get PDF
    Purpose: To investigate the natural history in patients with LRAT-associated retinal degenerations (RDs), in the advent of clinical trials testing treatment options. Methods: A retrospective cohort of 13 patients with LRAT-RDs. Results: Twelve patients from a genetic isolate carried a homozygous c.12del mutation. One unrelated patient carried a homozygous c.326G>T mutation. The mean follow-up time was 25.3 years (SD 15.2; range 4.8-53.5). The first symptom was nyctalopia (n = 11), central vision loss (n = 1), or light-gazing (n = 1), and was noticed in the first decade of life. Seven patients (54%) reached low vision (visual acuity < 20/67), four of whom reaching blindness (visual acuity < 20/400), respectively, at mean ages of 49.9 (SE 5.4) and 59.9 (SE 3.1) years. The fundus appearance was variable. Retinal white dots were seen in six patients (46%). Full-field electroretinograms (n = 11) were nondetectable (n = 2; ages 31-60), reduced in a nonspecified pattern (n = 2; ages 11-54), or showed rod-cone (n = 6; ages 38-48) or cone-rod (n = 1; age 29) dysfunction. Optical coherence tomography (n = 4) showed retinal thinning but relative preservation of the (para-)foveal outer retinal layers in the second (n = 1) and sixth decade of life (n = 2), and profound chorioretinal degeneration from the eighth decade of life (n = 1). Conclusions: LRAT-associated phenotypes in this cohort were variable and unusual, but generally milder than those seen in RPE65-associated disease, and may be particularly amenable to treatment. The window of therapeutic opportunity can be extended in patients with a mild phenotype. Translational Relevance: Knowledge of the natural history of LRAT-RDs is essential in determining the window of opportunity in ongoing and future clinical trials for novel therapeutic options

    On the origin of proteins in human drusen : the meet, greet and stick hypothesis

    Get PDF
    This research was part-supported by de Algemene Nederlandse Vereniging ter Voorkoming van Blindheid (ANVVB), de Stichting Blinden-Penning, de Gelderse Blinden Stichting, de Landelijke Stichting voor Blinden en Slechtzienden (LSBS), Stichting Oogfonds Nederland, Stichting MD Fonds and Stichting Retina Nederland Fonds (represented by Uitzicht, grants 2011-6 and 2014-7 to A.A.B.), de Rotterdamse Stichting Blindenbelangen (RSB), de Haagse Stichting Blindenhulp, Stichting Lijf en Leven, Stichting voor Ooglijders (to A.A.B.); ZonMW grant nr 446001002 (to A.A.B. and C.K.); the Bill Brown Charitable Trust, Moorfields Eye Hospital Special Trustees, Mercer Fund from Fight for Sight, the Eye-Risk project funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 634479 (I.L. and E.E.), Fight for Sight project grant (I.L. and A.S.), the Bright Focus Foundation grant nr M2015370 (to SMH).Retinal drusen formation is not only a clinical hallmark for the development of age-related macular degeneration (AMD) but also for other disorders, such as Alzheimer's disease and renal diseases. The initiation and growth of drusen is poorly understood. Attention has focused on lipids and minerals, but relatively little is known about the origin of drusen-associated proteins and how they are retained in the space between the basal lamina of the retinal pigment epithelium and the inner collagenous layer space (sub-RPE-BL space). While some authors suggested that drusen proteins are mainly derived from cellular debris from processed photoreceptor outer segments and the RPE, others suggest a choroidal cell or blood origin. Here, we reviewed and supplement the existing literature on the molecular composition of the retina/choroid complex, to gain a more complete understanding of the sources of proteins in drusen. These “drusenomics” studies showed that a considerable proportion of currently identified drusen proteins is uniquely originating from the blood. A smaller, but still large fraction of drusen proteins comes from both blood and/or RPE. Only a small proportion of drusen proteins is uniquely derived from the photoreceptors or choroid. We next evaluated how drusen components may “meet, greet and stick” to each other and/or to structures like hydroxyapatite spherules to form macroscopic deposits in the sub-RPE-BL space. Finally, we discuss implications of our findings with respect to the previously proposed homology between drusenogenesis in AMD and plaque formation in atherosclerosis.PostprintPeer reviewe

    Near-infrared reflectance imaging of neovascular age-related macular degeneration

    Get PDF
    Contains fulltext : 81007.pdf (publisher's version ) (Closed access)PURPOSE: To evaluate various types of neovascular age-related macular degeneration (AMD) by near-infrared fundus reflectance (NIR) as compared to fundus fluorescein angiography (FFA) and to test NIR for assessment of leakage due to choroidal neovascularization (CNV). PATIENTS AND METHODS: Thirty-three patients with neovascular AMD (cases) and 20 age-matched patients with non-exudative AMD and healthy subjects (controls) were examined with a confocal scanning laser ophthalmoscope (Heidelberg Retina Angiograph 2). NIR images of neovascular AMD were qualitatively compared to the corresponding FFA and to age-matched controls. CNV membranes and exudation areas were manually segmented on FFA and NIR and analyzed quantitatively. Results : Of all cases included, five eyes had classic CNV, six had minimal classic lesions, 15 occult CNV's and seven eyes had retinal angiomatous proliferation (RAP). A dark halo on NIR was found in all cases and showed high correspondence to leakage on FFA (r (2) = 0.93; p < 0,0005). In classic CNV and minimal classic CNV, the classic part of the lesion on FFA revealed strong correlation to a dark core surrounded by a bright reflecting ring on NIR (r (2) = 0.88; p < 0.0005). Occult parts on FFA of minimal classic CNV and occult CNV lesions appeared as poorly demarcated, jagged areas of increased NIR. RAP was characterized by speckled NIR located at the intraretinal neovascular complex. CONCLUSIONS: NIR imaging in neovascular AMD revealed characteristic alterations depending on the type of CNV. These changes may reflect histological differences of the lesions. Leakage caused local darkening of NIR, presumably originating from increased light-scattering and absorbance by fluid accumulation and sub-cellular structure alterations

    Retinal Dystrophies and the Road to Treatment: Clinical Requirements and Considerations

    Get PDF
    : Retinal dystrophies (RDs) comprise relatively rare but devastating causes of progressive vision loss. They represent a spectrum of diseases with marked genetic and clinical heterogeneity. Mutations in the same gene may lead to different diagnoses, for example, retinitis pigmentosa or cone dystrophy. Conversely, mutations in different genes may lead to the same phenotype. The age at symptom onset, and the rate and characteristics of peripheral and central vision decline, may vary widely per disease group and even within families. For most RD cases, no effective treatment is currently available. However, preclinical studies and phase I/II/III gene therapy trials are ongoing for several RD subtypes, and recently the first retinal gene therapy has been approved by the US Food and Drug Administration for RPE65-associated RDs: voretigene neparvovec-rzyl (Luxturna). With the rapid advances in gene therapy studies, insight into the phenotypic spectrum and long-term disease course is crucial information for several RD types. The vast clinical heterogeneity presents another important challenge in the evaluation of potential efficacy in future treatment trials, and in establishing treatment candidacy criteria. This perspective describes these challenges, providing detailed clinical descriptions of several forms of RD that are caused by genes of interest for ongoing and future gene or cell-based therapy trials. Several ongoing and future treatment options will be described

    Recording and Analysis of Goldmann Kinetic Visual Fields

    No full text
    Goldmann kinetic perimetry is a commonly used method of evaluating the peripheral visual field. Ongoing gene therapy trials have targeted the central retina, but have nonetheless often included Goldmann kinetic perimetry as part of extensive preinterventional and postinterventional assessment. Future gene therapy trials may target the entire retina through intravitreal injections, as have drug therapeutic trials, further necessitating the evaluation of function across the entire retina. In the following pages, we will briefly review the necessary steps to perform and quantify the visual field, using the conventional Goldmann perimeter and the Field Digitizer software (version 4.20; Johns Hopkins Technology Ventures, Baltimore, USA), respectivel

    Risk of recurrence and transition to chronic disease in acute central serous chorioretinopathy

    No full text
    Purpose: To study the risk of recurrence in acute central serous chorioretinopathy (aCSC) and to evaluate the risk of transitioning to chronic CSC. Patients and Methods: The medical records and multimodal imaging data of 295 aCSC cases were reviewed. Typical aCSC was defined as the presence of serous subretinal fluid (SRF), one focal leakage spot on fluorescein angiography (FA), retinal pigment epithelium (RPE) alterations limited in area to less than one optic disc diameter, and complete recovery from this first CSC episode. An increase in RPE alterations combined with persistent SRF was considered a sign of chronicity, which was determined in cases with >12 months follow-up. The main outcome measures included final visual acuity, percentage of disease recurrence, and percentage of cases moving toward a chronic phenotype. Treatment strategies and their efficacy were also reviewed. Results: A total of 295 eyes in 291 patients with aCSC were included. Spontaneous recovery was awaited in 154 eyes (52%), whereas 141 eyes (48%) recovered following treatment. SRF recurrence occurred in 24% of untreated cases and in 4% of treated cases (p<0.001). An analysis of 61 eyes that underwent an FA after ≥12 months of follow-up revealed increased RPE alterations in 22 eyes (36%), and 14 eyes (23%) had both an increase in RPE alterations and SRF recurrence. Conclusion: All aCSC cases recovered from the first disease episode, and none of the cases developed persistent SRF leakage. Among the cases for which long-term follow-up informa-tion was available, 36% showed a tendency toward chronicity in terms of increased RPE alterations, whereas 23% showed both an increase in RPE alterations and recurrent SRF. Early photodynamic therapy (PDT) may decrease the risk of recurrences

    Serous business: Delineating the broad spectrum of diseases with subretinal fluid in the macula

    No full text
    A wide range of ocular diseases can present with serous subretinal fluid in the macula and therefore clinically mimic central serous chorioretinopathy (CSC). In this manuscript, we categorise the diseases and conditions that are part of the differential diagnosis into 12 main pathogenic subgroups: neovascular diseases, vitelliform lesions, inflammatory diseases, ocular tumours, haematological malignancies, paraneoplastic syndromes, genetic diseases, ocular developmental anomalies, medication-related conditions and toxicity-related diseases, rhegmatogenous retinal detachment and tractional retinal detachment, retinal vascular diseases, and miscellaneous diseases. In addition, we describe 2 new clinical pictures associated with macular subretinal fluid accumulation, namely serous maculopathy with absence of retinal pigment epithelium (SMARPE) and serous maculopathy due to aspecific choroidopathy (SMACH). Differentiating between these various diseases and CSC can be challenging, and obtaining the correct diagnosis can have immediate therapeutic and prognostic consequences. Here, we describe the key differential diagnostic features of each disease within this clinical spectrum, including representative case examples. Moreover, we discuss the pathogenesis of each disease in order to facilitate the differentiation from typical CSC
    • …
    corecore