109 research outputs found

    Nuclear receptors in vascular biology

    Get PDF
    Nuclear receptors sense a wide range of steroids and hormones (estrogens, progesterone, androgens, glucocorticoid, and mineralocorticoid), vitamins (A and D), lipid metabolites, carbohydrates, and xenobiotics. In response to these diverse but critically important mediators, nuclear receptors regulate the homeostatic control of lipids, carbohydrate, cholesterol, and xenobiotic drug metabolism, inflammation, cell differentiation and development, including vascular development. The nuclear receptor family is one of the most important groups of signaling molecules in the body and as such represent some of the most important established and emerging clinical and therapeutic targets. This review will highlight some of the recent trends in nuclear receptor biology related to vascular biology

    L1TD1 Is a Marker for Undifferentiated Human Embryonic Stem Cells

    Get PDF
    Human embryonic stem cells (hESC) are stem cells capable of differentiating into cells representative of the three primary embryonic germ layers. There has been considerable interest in understanding the mechanisms regulating stem cell pluripotency, which will ultimately lead to development of more efficient methods to derive and culture hESC. In particular, Oct4, Sox2 and Nanog are transcription factors known to be important in maintenance of hESC. However, many of the downstream targets of these transcription factors are not well characterized. Furthermore, it remains unknown whether additional novel stem cell factors are involved in the establishment and maintenance of the stem cell state.Here we show that a novel gene, L1TD1 (also known as FLJ10884 or ECAT11), is abundantly expressed in undifferentiated hESC. Differentiation of hESC via embryoid body (EB) formation or BMP4 treatment results in the rapid down-regulation of L1TD1 expression. Furthermore, populations of undifferentiated and differentiated hESC were sorted using the stem cell markers SSEA4 and TRA160. Our results show that L1TD1 is enriched in the SSEA4-positive or TRA160-positive population of hESC. Using chromatin immunoprecipitation we found enriched association of Nanog to the predicted promoter region of L1TD1. Furthermore, siRNA-mediated knockdown of Nanog in hESC also resulted in downregulation of L1TD1 expression. Finally, using luciferase reporter assay we demonstrated that Nanog can activate the L1TD1 upstream promoter region. Altogether, these results provide evidence that L1TD1 is a downstream target of Nanog.Taken together, our results suggest that L1TD1 is a downstream target of Nanog and represents a useful marker for identifying undifferentiated hESC

    Cell Cycle Phase Regulates Glucocorticoid Receptor Function

    Get PDF
    The glucocorticoid receptor (GR) is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. In contrast to many other nuclear receptors, GR is thought to be exclusively cytoplasmic in quiescent cells, and only translocate to the nucleus on ligand binding. We now demonstrate significant nuclear GR in the absence of ligand, which requires nuclear localisation signal 1 (NLS1). Live cell imaging reveals dramatic GR import into the nucleus through interphase and rapid exclusion of the GR from the nucleus at the onset of mitosis, which persists into early G1. This suggests that the heterogeneity in GR distribution is reflective of cell cycle phase

    Interference with Activator Protein-2 transcription factors leads to induction of apoptosis and an increase in chemo- and radiation-sensitivity in breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activator Protein-2 (AP-2) transcription factors are critically involved in a variety of fundamental cellular processes such as proliferation, differentiation and apoptosis and have also been implicated in carcinogenesis. Expression of the family members AP-2α and AP-2γ is particularly well documented in malignancies of the female breast. Despite increasing evaluation of single AP-2 isoforms in mammary tumors the functional role of concerted expression of multiple AP-2 isoforms in breast cancer remains to be elucidated. AP-2 proteins can form homo- or heterodimers, and there is growing evidence that the net effect whether a cell will proliferate, undergo apoptosis or differentiate is partly dependent on the balance between different AP-2 isoforms.</p> <p>Methods</p> <p>We simultaneously interfered with all AP-2 isoforms expressed in ErbB-2-positive murine N202.1A breast cancer cells by conditionally over-expressing a dominant-negative AP-2 mutant.</p> <p>Results</p> <p>We show that interference with AP-2 protein function lead to reduced cell number, induced apoptosis and increased chemo- and radiation-sensitivity. Analysis of global gene expression changes upon interference with AP-2 proteins identified 139 modulated genes (90 up-regulated, 49 down-regulated) compared with control cells. Gene Ontology (GO) investigations for these genes revealed <it>Cell Death </it>and <it>Cell Adhesion and Migration </it>as the main functional categories including 25 and 12 genes, respectively. By using information obtained from Ingenuity Pathway Analysis Systems we were able to present proven or potential connections between AP-2 regulated genes involved in cell death and response to chemo- and radiation therapy, (i.e. <it>Ctgf, Nrp1</it>, <it>Tnfaip3, Gsta3</it>) and AP-2 and other main apoptosis players and to create a unique network.</p> <p>Conclusions</p> <p>Expression of AP-2 transcription factors in breast cancer cells supports proliferation and contributes to chemo- and radiation-resistance of tumor cells by impairing the ability to induce apoptosis. Therefore, interference with AP-2 function could increase the sensitivity of tumor cells towards therapeutic intervention.</p

    Enhanced Notch Activation Is Advantageous but Not Essential for T Cell Lymphomagenesis in Id1 Transgenic Mice

    Get PDF
    T cell lymphoblastic leukemia (T-ALL) is known to be associated with chromosomal abnormalities that lead to aberrant expression of a number of transcription factors such as TAL1, which dimerizes with basic helix-loop-helix (bHLH) E proteins and inhibits their function. Activated Notch receptors also efficiently induce T cell leukemogenesis in mouse models. Interestingly, gain-of-function mutations or cryptic transcription initiation of the Notch1 gene have been frequently found in both human and mouse T-ALL. However, the correlations between these alterations and overall Notch activities or leukemogenesis have not been thoroughly evaluated. Therefore, we made use of our collection of T cell lymphomas developed in transgenic mice expressing Id1, which like TAL1, inhibits E protein function. By comparing expression levels of Notch target genes in Id1-expressing tumors to those in tumors induced by a constitutively active form of Notch1, N1C, we were able to assess the overall activities of Notch pathways and conclude that the majority of Id1-expressing tumors had elevated Notch function to a varying degree. However, 26% of the Id1-expressing tumors had no evidence of enhanced Notch activation, but that did not delay the onset of tumorigenesis. Furthermore, we examined the genetic or epigenetic alterations thought to contribute to ligand-independent activation or protein stabilization of Notch1 and found that some of the Id1-expressing tumors acquired these changes, but they are not uniformly associated with elevated Notch activities in Id1 tumor samples. In contrast, N1C-expressing tumors do not harbor any PEST domain mutations nor exhibit intragenic transcription initiation. Taken together, it appears that Notch activation provides Id1-expressing tumor cells with selective advantages in growth and survival. However, this may not be absolutely essential for lymphomagenesis in Id1 transgenic mice and additional factors could also cooperate with Id1 to induce T cell lymphoma. Therefore, a broad approach is necessary in designing T-ALL therapy

    Recovering Protein-Protein and Domain-Domain Interactions from Aggregation of IP-MS Proteomics of Coregulator Complexes

    Get PDF
    Coregulator proteins (CoRegs) are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP) followed by mass spectrometry (MS) applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/

    Identification of Gemin5 as a Novel 7-Methylguanosine Cap-Binding Protein

    Get PDF
    A unique attribute of RNA molecules synthesized by RNA polymerase II is the presence of a 7-methylguanosine (m(7)G) cap structure added co-transcriptionally to the 5' end. Through its association with trans-acting effector proteins, the m(7)G cap participates in multiple aspects of RNA metabolism including localization, translation and decay. However, at present relatively few eukaryotic proteins have been identified as factors capable of direct association with m(7)G.Employing an unbiased proteomic approach, we identified gemin5, a component of the survival of motor neuron (SMN) complex, as a factor capable of direct and specific interaction with the m(7)G cap. Gemin5 was readily purified by cap-affinity chromatography in contrast to other SMN complex proteins. Investigating the underlying basis for this observation, we found that purified gemin5 associates with m(7)G-linked sepharose in the absence of detectable eIF4E, and specifically crosslinks to radiolabeled cap structure after UV irradiation. Deletion analysis revealed that an intact set of WD repeat domains located in the N-terminal half of gemin5 are required for cap-binding. Moreover, using structural modeling and site-directed mutagenesis, we identified two proximal aromatic residues located within the WD repeat region that significantly impact m(7)G association.This study rigorously identifies gemin5 as a novel cap-binding protein and describes an unprecedented role for WD repeat domains in m(7)G recognition. The findings presented here will facilitate understanding of gemin5's role in the metabolism of non-coding snRNAs and perhaps other RNA pol II transcripts

    Deep Sequencing of MYC DNA-Binding Sites in Burkitt Lymphoma

    Get PDF
    BACKGROUND: MYC is a key transcription factor involved in central cellular processes such as regulation of the cell cycle, histone acetylation and ribosomal biogenesis. It is overexpressed in the majority of human tumors including aggressive B-cell lymphoma. Especially Burkitt lymphoma (BL) is a highlight example for MYC overexpression due to a chromosomal translocation involving the c-MYC gene. However, no genome-wide analysis of MYC-binding sites by chromatin immunoprecipitation (ChIP) followed by next generation sequencing (ChIP-Seq) has been conducted in BL so far. METHODOLOGY/PRINCIPAL FINDINGS: ChIP-Seq was performed on 5 BL cell lines with a MYC-specific antibody giving rise to 7,054 MYC-binding sites after bioinformatics analysis of a total of approx. 19 million sequence reads. In line with previous findings, binding sites accumulate in gene sets known to be involved in the cell cycle, ribosomal biogenesis, histone acetyltransferase and methyltransferase complexes demonstrating a regulatory role of MYC in these processes. Unexpectedly, MYC-binding sites also accumulate in many B-cell relevant genes. To assess the functional consequences of MYC binding, the ChIP-Seq data were supplemented with siRNA- mediated knock-downs of MYC in BL cell lines followed by gene expression profiling. Interestingly, amongst others, genes involved in the B-cell function were up-regulated in response to MYC silencing. CONCLUSION/SIGNIFICANCE: The 7,054 MYC-binding sites identified by our ChIP-Seq approach greatly extend the knowledge regarding MYC binding in BL and shed further light on the enormous complexity of the MYC regulatory network. Especially our observations that (i) many B-cell relevant genes are targeted by MYC and (ii) that MYC down-regulation leads to an up-regulation of B-cell genes highlight an interesting aspect of BL biology

    Adjunctive Dexamethasone Affects the Expression of Genes Related to Inflammation, Neurogenesis and Apoptosis in Infant Rat Pneumococcal Meningitis

    Get PDF
    Streptococcus pneumoniae is the most common pathogen causing non-epidemic bacterial meningitis worldwide. The immune response and inflammatory processes contribute to the pathophysiology. Hence, the anti-inflammatory dexamethasone is advocated as adjuvant treatment although its clinical efficacy remains a question at issue. In experimental models of pneumococcal meningitis, dexamethasone increased neuronal damage in the dentate gyrus. Here, we investigated expressional changes in the hippocampus and cortex at 72 h after infection when dexamethasone was given to infant rats with pneumococcal meningitis. Nursing Wistar rats were intracisternally infected with Streptococcus pneumoniae to induce experimental meningitis or were sham-infected with pyrogen-free saline. Besides antibiotics, animals were either treated with dexamethasone or saline. Expressional changes were assessed by the use of GeneChip® Rat Exon 1.0 ST Arrays and quantitative real-time PCR. Protein levels of brain-derived neurotrophic factor, cytokines and chemokines were evaluated in immunoassays using Luminex xMAP® technology. In infected animals, 213 and 264 genes were significantly regulated by dexamethasone in the hippocampus and cortex respectively. Separately for the cortex and the hippocampus, Gene Ontology analysis identified clusters of biological processes which were assigned to the predefined categories “inflammation”, “growth”, “apoptosis” and others. Dexamethasone affected the expression of genes and protein levels of chemokines reflecting diminished activation of microglia. Dexamethasone-induced changes of genes related to apoptosis suggest the downregulation of the Akt-survival pathway and the induction of caspase-independent apoptosis. Signalling of pro-neurogenic pathways such as transforming growth factor pathway was reduced by dexamethasone resulting in a lack of pro-survival triggers. The anti-inflammatory properties of dexamethasone were observed on gene and protein level in experimental pneumococcal meningitis. Further dexamethasone-induced expressional changes reflect an increase of pro-apoptotic signals and a decrease of pro-neurogenic processes. The findings may help to identify potential mechanisms leading to apoptosis by dexamethasone in experimental pneumococcal meningitis
    corecore