187 research outputs found

    Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya

    Get PDF
    The sediment flux through Himalayan rivers directly impacts water quality and is important for sustaining agriculture as well as maintaining drinking-water and hydropower generation. Despite the recent increase in demand for these resources, little is known about the triggers and sources of extreme sediment flux events, which lower water quality and account for extensive hydropower reservoir filling and turbine abrasion. Here, we present a comprehensive analysis of the spatiotemporal trends in suspended sediment flux based on daily data during the past decade (2001–2009) from four sites along the Sutlej River and from four of its main tributaries. In conjunction with satellite data depicting rainfall and snow cover, air temperature and earthquake records, and field observations, we infer climatic and geologic controls of peak suspended sediment concentration (SSC) events. Our study identifies three key findings: First, peak SSC events (≄ 99th SSC percentile) coincide frequently (57–80%) with heavy rainstorms and account for about 30% of the suspended sediment flux in the semi-arid to arid interior of the orogen. Second, we observe an increase of suspended sediment flux from the Tibetan Plateau to the Himalayan Front at mean annual timescales. This sediment-flux gradient suggests that averaged, modern erosion in the western Himalaya is most pronounced at frontal regions, which are characterized by high monsoonal rainfall and thick soil cover. Third, in seven of eight catchments, we find an anticlockwise hysteresis loop of annual sediment flux variations with respect to river discharge, which appears to be related to enhanced glacial sediment evacuation during late summer. Our analysis emphasizes the importance of unconsolidated sediments in the high-elevation sector that can easily be mobilized by hydrometeorological events and higher glacial-meltwater contributions. In future climate change scenarios, including continuous glacial retreat and more frequent monsoonal rainstorms across the Himalaya, we expect an increase in peak SSC events, which will decrease the water quality and impact hydropower generation

    Measuring decadal vertical land-level changes from SRTM-C (2000) and TanDEM-X (∌ 2015) in the south-central Andes

    Get PDF
    In the arctic and high mountains it is common to measure vertical changes of ice sheets and glaciers via digital elevation model (DEM) differencing. This requires the signal of change to outweigh the noise associated with the datasets. Excluding large landslides, on the ice-free earth the land-level change is smaller in vertical magnitude and thus requires more accurate DEMs for differencing and identification of change. Previously, this has required meter to submeter data at small spatial scales. Following careful corrections, we are able to measure land-level changes in gravel-bed channels and steep hillslopes in the south-central Andes using the SRTM-C (collected in 2000) and the TanDEM-X (collected from 2010 to 2015) near-global 12–30&thinsp;m DEMs. Long-standing errors in the SRTM-C are corrected using the TanDEM-X as a control surface and applying cosine-fit co-registration to remove ∌ 1∕10 pixel (∌ 3&thinsp;m) shifts, fast Fourier transform (FFT) and filtering to remove SRTM-C short- and long-wavelength stripes, and blocked shifting to remove remaining complex biases. The datasets are then differenced and outlier pixels are identified as a potential signal for the case of gravel-bed channels and hillslopes. We are able to identify signals of incision and aggradation (with magnitudes down to ∌ 3&thinsp;m in the best case) in two  &gt; 100&thinsp;km river reaches, with increased geomorphic activity downstream of knickpoints. Anthropogenic gravel excavation and piling is prominently measured, with magnitudes exceeding ±5&thinsp;m (up to  &gt; 10&thinsp;m for large piles). These values correspond to conservative average rates of 0.2 to &gt; 0.5&thinsp;m&thinsp;yr−1 for vertical changes in gravel-bed rivers. For hillslopes, since we require stricter cutoffs for noise, we are only able to identify one major landslide in the study area with a deposit volume of 16&thinsp;&plusmn;&thinsp;0.15&thinsp;&times;&thinsp;106&thinsp;m3. Additional signals of change can be garnered from TanDEM-X auxiliary layers; however, these are more difficult to quantify. The methods presented can be extended to any region of the world with SRTM-C and TanDEM-X coverage where vertical land-level changes are of interest, with the caveat that remaining vertical uncertainties in primarily the SRTM-C limit detection in steep and complex topography.</p

    Atmospheric dynamics of extreme discharge events from 1979 to 2016 in the southern Central Andes

    Get PDF
    During the South-American Monsoon season, deep convective systems occur at the eastern flank of the Central Andes leading to heavy rainfall and flooding. We investigate the large- and meso-scale atmospheric dynamics associated with extreme discharge events (> 99.9th percentile) observed in two major river catchments meridionally stretching from humid to semi-arid conditions in the southern Central Andes. Based on daily gauge time series and ERA-Interim reanalysis, we made the following three key observations: (1) for the period 1940–2016 daily discharge exhibits more pronounced variability in the southern, semi-arid than in the northern, humid catchments. This is due to a smaller ratio of discharge magnitudes between intermediate (0.2 year return period) and rare events (20 year return period) in the semi-arid compared to the humid areas; (2) The climatological composites of the 40 largest discharge events showed characteristic atmospheric features of cold surges based on 5-day time-lagged sequences of geopotential height at different levels in the troposphere; (3) A subjective classification revealed that 80% of the 40 largest discharge events are mainly associated with the north-northeastward migration of frontal systems and 2/3 of these are cold fronts, i.e. cold surges. This work highlights the importance of cold surges and their related atmospheric processes for the generation of heavy rainfall events and floods in the southern Central Andes.Fil: Castino, F.. Universitat Potsdam; AlemaniaFil: Bookhagen, B.. Universitat Potsdam; AlemaniaFil: de la Torre, Alejandro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Austral. Facultad de IngenierĂ­a. Departamento de Ciencias BĂĄsicas; Argentin

    Fluvial Sediment Aggradation and Incision in NW Sub-Himalaya

    Get PDF
    Abstract HKT-ISTP 2013 A

    Determining the optimal grid resolution for topographic analysis on an airborne lidar dataset

    Get PDF
    Digital elevation models (DEMs) are a gridded representation of the surface of the Earth and typically contain uncertainties due to data collection and processing. Slope and aspect estimates on a DEM contain errors and uncertainties inherited from the representation of a continuous surface as a grid (referred to as truncation error; TE) and from any DEM uncertainty. We analyze in detail the impacts of TE and propagated elevation uncertainty (PEU) on slope and aspect. Using synthetic data as a control, we define functions to quantify both TE and PEU for arbitrary grids. We then develop a quality metric which captures the combined impact of both TE and PEU on the calculation of topographic metrics. Our quality metric allows us to examine the spatial patterns of error and uncertainty in topographic metrics and to compare calculations on DEMs of different sizes and accuracies. Using lidar data with point density of ∌10&thinsp;pts&thinsp;m−2 covering Santa Cruz Island in southern California, we are able to generate DEMs and uncertainty estimates at several grid resolutions. Slope (aspect) errors on the 1&thinsp;m dataset are on average 0.3∘ (0.9∘) from TE and 5.5∘ (14.5∘) from PEU. We calculate an optimal DEM resolution for our SCI lidar dataset of 4&thinsp;m that minimizes the error bounds on topographic metric calculations due to the combined influence of TE and PEU for both slope and aspect calculations over the entire SCI. Average slope (aspect) errors from the 4&thinsp;m DEM are 0.25∘ (0.75∘) from TE and 5∘ (12.5∘) from PEU. While the smallest grid resolution possible from the high-density SCI lidar is not necessarily optimal for calculating topographic metrics, high point-density data are essential for measuring DEM uncertainty across a range of resolutions.</p

    Active deformation in the Pamir – Tian Shan collision zone, NW China

    Get PDF
    Abstract HKT-ISTP 2013 A

    Impact of transient groundwater storage on the discharge of Himalayan rivers

    No full text
    International audienceIn the course of the transfer of precipitation into rivers, water is temporarily stored in reservoirs with different residence times such as soils, groundwater, snow and glaciers. In the central Himalaya, the water budget is thought to be primarily controlled by monsoon rainfall, snow and glacier melt, and secondarily by evapotranspiration. An additional contribution from deep groundwater has been deduced from the chemistry of Himalayan rivers, but its importance in the annual water budget remains to be evaluated. Here we analyse records of daily precipitation and discharge within twelve catchments in Nepal over about 30 years. We observe annual hysteresis loops--that is, a time lag between precipitation and discharge--in both glaciated and unglaciated catchments and independent of the geological setting. We infer that water is stored temporarily in a reservoir with characteristic response time of about 45 days, suggesting a diffusivity typical of fractured basement aquifers. We estimate this transient storage capacity at about 28km3 for the three main Nepal catchments; snow and glacier melt contribute around 14km3yr-1, about 10% of the annual river discharge. We conclude that groundwater storage in a fractured basement influences significantly the Himalayan river discharge cycle
    • 

    corecore