2,254 research outputs found

    Experimentally determined wear behavior of an Al2O3-SiC composite from 25 to 1200 C

    Get PDF
    The sliding wear behavior of a self-mated alumina-silicon carbide whisker toughened composite was studied using optical, scanning electron (SEM) and transmission electron (TEM) microscopy. Because of its excellent strength and toughness properties this composite material is under consideration for use in heat engine applications for sliding contacts which operate at elevated temperatures. The composite's wear behavior and especially its wear mechanisms are not well understood. Pin-on-disk specimens were slid in air at 2.7 m/s sliding velocity, under a 26.5-N load, at temperatures 25 to 1200 C. Pin wear increased with increasing temperature. Based upon the microscopic analyses, the wear mechanism seems to be loosening of the reinforcing whiskers due to frictional and bulk heating. This leads to whisker pullout and increased wear

    Sliding wear of self-mated Al2O3-SiC whisker reinforced composites at 23-1200 C

    Get PDF
    Microstructural changes occurring during sliding wear of self-mated Al2O3-SiC whisker reinforced composites were studied using optical, scanning electron microscopy, and transmission electron microscopy. Pin-on-disk specimens were slid in air at 2.7 m/sec sliding velocity under a 26.5 N load for 1 hr. Wear tests were conducted at 23, 600, 800, and 1200 C. Mild wear with a wear factor of 2.4 times 10(exp -7) to 1.5 times 10(exp -6) cu mm/Nm was experienced at all test temperatures. The composite shows evidence of wear by fatigue mechanisms at 800 C and below. Tribochemical reaction (SiC oxidation and reaction of SiO2 and Al2O3) leads to intergranular failure at 1200 C. Distinct microstructural differences existing at each test temperature are reported

    Knuth-Bendix algorithm and the conjugacy problems in monoids

    Full text link
    We present an algorithmic approach to the conjugacy problems in monoids, using rewriting systems. We extend the classical theory of rewriting developed by Knuth and Bendix to a rewriting that takes into account the cyclic conjugates.Comment: This is a new version of the paper 'The conjugacy problems in monoids and semigroups'. This version will appear in the journal 'Semigroup forum

    Design and fabrication of an autonomous rendezvous and docking sensor using off-the-shelf hardware

    Get PDF
    NASA Marshall Space Flight Center (MSFC) has developed and tested an engineering model of an automated rendezvous and docking sensor system composed of a video camera ringed with laser diodes at two wavelengths and a standard remote manipulator system target that has been modified with retro-reflective tape and 830 and 780 mm optical filters. TRW has provided additional engineering analysis, design, and manufacturing support, resulting in a robust, low cost, automated rendezvous and docking sensor design. We have addressed the issue of space qualification using off-the-shelf hardware components. We have also addressed the performance problems of increased signal to noise ratio, increased range, increased frame rate, graceful degradation through component redundancy, and improved range calibration. Next year, we will build a breadboard of this sensor. The phenomenology of the background scene of a target vehicle as viewed against earth and space backgrounds under various lighting conditions will be simulated using the TRW Dynamic Scene Generator Facility (DSGF). Solar illumination angles of the target vehicle and candidate docking target ranging from eclipse to full sun will be explored. The sensor will be transportable for testing at the MSFC Flight Robotics Laboratory (EB24) using the Dynamic Overhead Telerobotic Simulator (DOTS)

    Autoguidance video sensor for docking

    Get PDF
    The Automated Rendezvous and Docking system (ARAD) is composed of two parts. The first part is the sensor which consists of a video camera ringed with two wavelengths of laser diode. The second part is a standard Remote Manipulator System (RMS) target used on the Orbiter that has been modified with three circular pieces of retro-reflective tape covered by optical filters which correspond to one of the wavelengths of laser diode. The sensor is on the chase vehicle and the target is on the target vehicle. The ARAD system works by pulsing one wavelength laser diodes and taking a picture. Then the second wavelength laser diodes are pulsed and a second picture is taken. One picture is subtracted from the other and the resultant picture is thresholded. All adjacent pixels above threshold are blobbed together (X and Y centroids calculated). All blob centroids are checked to recognize the target out of noise. Then the three target spots are windowed and tracked. The three target spot centroids are used to evaluate the roll, yaw, pitch, range, azimuth, and elevation. From that a guidance routine can guide the chase vehicle to dock with the target vehicle with the correct orientation

    Experimental investigation of the fundamental modes of a collisionless plasma Final report, 10 Mar. 1964 - 31 Oct. 1967

    Get PDF
    Propagation of electron cyclotron waves and effects of low frequency noise in collisionless plasm

    Structure of Supergiant Shells in the Large Magellanic Cloud

    Full text link
    Nine supergiant shells (SGSs) have been identified in the Large Magellanic Cloud (LMC) based on H-alpha images, and twenty-three SGSs have been reported based on HI 21-cm line observations, but these sets do not always identify the same structures. We have examined the physical structure of the optically identified SGSs using HI channel maps and P-V diagrams to analyze the gas kinematics. There is good evidence for seven of the nine optically identified SGSs to be true shells. Of these seven H-alpha SGSs, four are the ionized inner walls of HI SGSs, while three are an ionized portion of a larger and more complex HI structure. All of the H-alpha SGSs are identified as such because they have OB associations along the periphery or in the center, with younger OB associations more often found along the periphery. After roughly 12 Myrs, if no new OB associations have been formed a SGS will cease to be identifiable at visible wavelengths. Thus, the presence and location of ionizing sources is the main distinction between shells seen only in HI and those also seen in H-alpha. Based on our analysis, H-alpha observations alone cannot unambiguously identify SGSs, especially in distant galaxies.Comment: 26 pages, 16 figures, accepted for publication in the Astrophysical Journal Supplemen

    Counting Hamilton cycles in sparse random directed graphs

    Full text link
    Let D(n,p) be the random directed graph on n vertices where each of the n(n-1) possible arcs is present independently with probability p. A celebrated result of Frieze shows that if p(logn+ω(1))/np\ge(\log n+\omega(1))/n then D(n,p) typically has a directed Hamilton cycle, and this is best possible. In this paper, we obtain a strengthening of this result, showing that under the same condition, the number of directed Hamilton cycles in D(n,p) is typically n!(p(1+o(1)))nn!(p(1+o(1)))^{n}. We also prove a hitting-time version of this statement, showing that in the random directed graph process, as soon as every vertex has in-/out-degrees at least 1, there are typically n!(logn/n(1+o(1)))nn!(\log n/n(1+o(1)))^{n} directed Hamilton cycles

    Vortex solutions in axial or chiral coupled non-relativistic spinor- Chern-Simons theory

    Get PDF
    The interaction of a spin 1/2 particle (described by the non-relativistic "Dirac" equation of L\'evy-Leblond) with Chern-Simons gauge fields is studied. It is shown, that similarly to the four dimensional spinor models, there is a consistent possibility of coupling them also by axial or chiral type currents. Static self dual vortex solutions together with a vortex-lattice are found with the new couplings.Comment: Plain TEX, 10 page
    corecore