94 research outputs found

    Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes

    Get PDF
    Chondrogenesis is a process involving stem-cell differentiation through the coordinated effects of growth/differentiation factors and extracellular matrix (ECM) components. Recently, mesenchymal stem cells (MSCs) were found within the cartilage, which constitutes a specific niche composed of ECM proteins with unique features. Therefore, we hypothesized that the induction of MSC differentiation towards chondrocytes might be induced and/or influenced by molecules from the microenvironment. Using microarray analysis, we previously identified genes that are regulated during MSC differentiation towards chondrocytes. In this study, we wanted to precisely assess the differential expression of genes associated with the microenvironment using a large-scale real-time PCR assay, according to the simultaneous detection of up to 384 mRNAs in one sample. Chondrogenesis of bone-marrow-derived human MSCs was induced by culture in micropellet for various periods of time. Total RNA was extracted and submitted to quantitative RT-PCR. We identified molecules already known to be involved in attachment and cell migration, including syndecans, glypicans, gelsolin, decorin, fibronectin, and type II, IX and XI collagens. Importantly, we detected the expression of molecules that were not previously associated with MSCs or chondrocytes, namely metalloproteases (MMP-7 and MMP-28), molecules of the connective tissue growth factor (CTGF); cef10/cyr61 and nov (CCN) family (CCN3 and CCN4), chemokines and their receptors chemokine CXC motif ligand (CXCL1), Fms-related tyrosine kinase 3 ligand (FlT3L), chemokine CC motif receptor (CCR3 and CCR4), molecules with A Disintegrin And Metalloproteinase domain (ADAM8, ADAM9, ADAM19, ADAM23, A Disintegrin And Metalloproteinase with thrombospondin type 1 motif ADAMTS-4 and ADAMTS-5), cadherins (4 and 13) and integrins (α4, α7 and β5). Our data suggest that crosstalk between ECM components of the microenvironment and MSCs within the cartilage is responsible for the differentiation of MSCs into chondrocytes

    Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells

    Get PDF
    Previous studies have reported that mesenchymal stem cells (MSC) may be isolated from the synovial membrane by the same protocol as that used for synovial fibroblast cultivation, suggesting that MSC correspond to a subset of the adherent cell population, as MSC from the stromal compartment of the bone marrow (BM). The aims of the present study were, first, to better characterize the MSC derived from the synovial membrane and, second, to compare systematically, in parallel, the MSC-containing cell populations isolated from BM and those derived from the synovium, using quantitative assays. Fluorescent-activated cell sorting analysis revealed that both populations were negative for CD14, CD34 and CD45 expression and that both displayed equal levels of CD44, CD73, CD90 and CD105, a phenotype currently known to be characteristic of BM-MSC. Comparable with BM-MSC, such MSC-like cells isolated from the synovial membrane were shown for the first time to suppress the T-cell response in a mixed lymphocyte reaction, and to express the enzyme indoleamine 2,3-dioxygenase activity to the same extent as BM-MSC, which is a possible mediator of this suppressive activity. Using quantitative RT-PCR these data show that MSC-like cells from the synovium and BM may be induced to chondrogenic differentiation and, to a lesser extent, to osteogenic differentiation, but the osteogenic capacities of the synovium-derived MSC were significantly reduced based on the expression of the markers tested (collagen type II and aggrecan or alkaline phosphatase and osteocalcin, respectively). Transcription profiles, determined with the Atlas Human Cytokine/Receptor Array, revealed discrimination between the MSC-like cells from the synovial membrane and the BM-MSC by 46 of 268 genes. In particular, activin A was shown to be one major upregulated factor, highly secreted by BM-MSC. Whether this reflects a different cellular phenotype, a different amount of MSC in the synovium-derived population compared with BM-MSC adherent cell populations or the impact of a different microenvironment remains to be determined. In conclusion, although the BM-derived and synovium-derived MSC shared similar phenotypic and functional properties, both their differentiation capacities and transcriptional profiles permit one to discriminate the cell populations according to their tissue origin

    Should We Assess Pituitary Function in Children After a Mild Traumatic Brain Injury? A Prospective Study

    Get PDF
    Objective: The aim of this study was to evaluate the frequency of hypopituitarism following TBI in a cohort of children who had been hospitalized for mild TBI and to identify the predictive factors for this deficiency.Design: A prospective study was conducted on children between 2 and 16 years of age who had been hospitalized for mild TBI according to the Glasgow Coma Scale between September 2009 and June 2013. Clinical parameters, basal pituitary hormone assessment at 0, 6, and 12 months, as well as a dynamic testing (insulin tolerance test) 12 months after TBI were performed.Results: The study included 109 children, the median age was 8.5 years. Patients were examined 6 months (n = 99) and 12 months (n = 96) after TBI. Somatotropic deficiency (defined by a GH peak <20 mUI/l in two tests, an IGF-1 <-1SDS and a delta height <0SDS) were confirmed in 2 cases. One case of gonadotrophic deficiency occurred 1 year after TBI among 13 pubertal children. No cases of precocious puberty, 5 cases of low prolactin level, no cases of corticotropic insufficiency (cortisol peak <500 nmol/l) and no cases diabetes insipidus were recorded.Conclusion: Pituitary insufficiency was present 1year after mild TBI in about 7% of children. Based on our results, we suggest testing children after mild TBI in case of clinical abnormalities. i.e., for GH axis, IGF-1, which should be assessed in children with a delta height <0 SDS, 6 to 12 months after TBI, and a dynamic GH testing (preferentially by an ITT) should be performed in case of IGF-1 <-1SDS, with a GH threshold at 20 mUI/L. However, if a systematic pituitary assessment is not required for mild TBI, physicians should monitor children 1 year after mild TBI with particular attention to growth and weight gain

    Isolation of mineralizing Nestin+ Nkx6.1+ vascular muscular cells from the adult human spinal cord

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The adult central nervous system (CNS) contains different populations of immature cells that could possibly be used to repair brain and spinal cord lesions. The diversity and the properties of these cells in the human adult CNS remain to be fully explored. We previously isolated Nestin<sup>+ </sup>Sox2<sup>+ </sup>neural multipotential cells from the adult human spinal cord using the neurosphere method (i.e. non adherent conditions and defined medium).</p> <p>Results</p> <p>Here we report the isolation and long term propagation of another population of Nestin<sup>+ </sup>cells from this tissue using adherent culture conditions and serum. QPCR and immunofluorescence indicated that these cells had mesenchymal features as evidenced by the expression of Snai2 and Twist1 and lack of expression of neural markers such as Sox2, Olig2 or GFAP. Indeed, these cells expressed markers typical of smooth muscle vascular cells such as Calponin, Caldesmone and Acta2 (Smooth muscle actin). These cells could not differentiate into chondrocytes, adipocytes, neuronal and glial cells, however they readily mineralized when placed in osteogenic conditions. Further characterization allowed us to identify the Nkx6.1 transcription factor as a marker for these cells. Nkx6.1 was expressed in vivo by CNS vascular muscular cells located in the parenchyma and the meninges.</p> <p>Conclusion</p> <p>Smooth muscle cells expressing Nestin and Nkx6.1 is the main cell population derived from culturing human spinal cord cells in adherent conditions with serum. Mineralization of these cells in vitro could represent a valuable model for studying calcifications of CNS vessels which are observed in pathological situations or as part of the normal aging. In addition, long term propagation of these cells will allow the study of their interaction with other CNS cells and their implication in scar formation during spinal cord injury.</p

    IL-6-Dependent PGE2 Secretion by Mesenchymal Stem Cells Inhibits Local Inflammation in Experimental Arthritis

    Get PDF
    BACKGROUND: Based on their capacity to suppress immune responses, multipotent mesenchymal stromal cells (MSC) are intensively studied for various clinical applications. Although it has been shown in vitro that the immunomodulatory effect of MSCs mainly occurs through the secretion of soluble mediators, the mechanism is still not completely understood. The aim of the present study was to better understand the mechanisms underlying the suppressive effect of MSCs in vivo, using cells isolated from mice deficient in the production of inducible nitric oxide synthase (iNOS) or interleukin (IL)-6 in the murine model of collagen-induced arthritis. PRINCIPAL FINDINGS: In the present study, we show that primary murine MSCs from various strains of mice or isolated from mice deficient for iNOS or IL-6 exhibit different immunosuppressive potential. The immunomodulatory function of MSCs was mainly attributed to IL-6-dependent secretion of prostaglandin E2 (PGE2) with a minor role for NO. To address the role of these molecules in vivo, we used the collagen-induced arthritis as an experimental model of immune-mediated disorder. MSCs effectively inhibited collagen-induced inflammation during a narrow therapeutic window. In contrast to wild type MSCs, IL-6-deficient MSCs and to a lesser extent iNOS-deficient MSCs were not able to reduce the clinical signs of arthritis. Finally, we show that, independently of NO or IL-6 secretion or Treg cell induction, MSCs modulate the host response by inducing a switch to a Th2 immune response. SIGNIFICANCE: Our data indicate that mscs mediate their immunosuppressive effect via two modes of action: locally, they reduce inflammation through the secretion of anti-proliferative mediators, such as NO and mainly PGE2, and systemically they switch the host response from a Th1/Th17 towards a Th2 immune profile

    DEMARCHE THERAPEUTIQUE SPECIFIQUE DEVANT UN ACCIDENT VASCULAIRE CEREBRAL ISCHEMIQUE ARTERIEL DE L'ENFANT (A PARTIR DE 16 OBSERVATIONS)

    No full text
    GRENOBLE1-BU Médecine pharm. (385162101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Usages et usagers des bains-douches parisiens

    No full text
    International audienc

    Les bains-douches Paris : une enquête sur les lieux et leurs usages

    No full text
    International audienc
    corecore