11 research outputs found

    In-Target Proton–Boron Nuclear Fusion Using a PW-Class Laser

    Get PDF
    Nuclear reactions between protons and boron-11 nuclei (p–B fusion) that were used to yield energetic α-particles were initiated in a plasma that was generated by the interaction between a PW-class laser operating at relativistic intensities (~3 × 10^19 W/cm2) and a 0.2-mm thick boron nitride (BN) target. A high p–B fusion reaction rate and hence, a large α-particle flux was generated and measured, thanks to a proton stream accelerated at the target’s front surface. This was the first proof of principle experiment to demonstrate the efficient generation of α-particles (~10^10/sr) through p–B fusion reactions using a PW-class laser in the “in-target” geometry

    Generation of α-Particle Beams With a Multi-kJ, Peta-Watt Class Laser System

    Get PDF
    We present preliminary results on generation of energetic α-particles driven by lasers. The experiment was performed at the Institute of Laser Engineering in Osaka using the short-pulse, high-intensity, high-energy, PW-class laser. The laser pulse was focused onto a thin plastic foil (pitcher) to generate a proton beam by the well-known TNSA mechanism which, in turn, was impinging onto a boron-nitride (BN) target (catcher) to generated alpha-particles as a result of proton-boron nuclear fusion events. Our results demonstrate generation of α-particles with energies in the range 8–10 MeV and with a flux around 5 × 10^9 sr^−1

    Laser driven ion acceleration by electrostatic shocks in gas jet targets and radioisotopes production.

    No full text
    La production de radioisotopes, notamment d’intĂ©rĂȘt mĂ©dical, est aujourd’huiprincipalement assurĂ©e par des accĂ©lĂ©rateurs conventionnels circulaires: les cyclotrons. Cesisotopes radioactifs, une fois produits, sont injectĂ©s dans le corps du patient Ă  des fins diag-nostique ou curative. Pour des radioisotopes Ă©metteurs Beta+, les positrons Ă©mis s’annihilenten deux gammas de façon instantannĂ©e par rĂ©action avec les Ă©lectrons de la matiĂšre. Cesdeux gammas Ă©mis Ă  180° sont dĂ©tectĂ©s en coincidence et permettent de remonter au pointd’émission du positron et ainsi de cartographier l’organe du patient. Pour des radioisotopesĂ©metteurs Beta-, alpha et gamma, les rayonnements ionisants Ă©mis permettent quant Ă  eux de traiter le patient en irradiant les cellules cancĂ©reuses.Les radioisotopes utilisĂ©s en mĂ©decine nuclĂ©aire doivent prĂ©senter une courte durĂ©e de vieafin de ne pas engendrer de dommages collatĂ©raux chez le patient. Cette courte durĂ©e de vieimpose de les produire directement dans les servives de mĂ©decine nuclĂ©aire pour les plus cou-rants (Fluor-18 en diagnostic) grĂące Ă  des cyclotrons consĂ©quents en termes d’encombrementet d’investissement. D’autres radioisotopes utilisĂ©s nĂ©cessitent des moyens de production en-core plus importants (cyclotron de type ARRONAX, rĂ©acteurs nuclĂ©aires pour le Technicium99) et doivent ĂȘtre livrĂ©s dans les hopitaux de façon rĂ©guliĂšre. Les dĂ©lais d’acheminement,les coĂ»ts de production et de maintenance des cyclotrons, le vieillissement des rĂ©acteursnuclĂ©aires, parallĂšlement au dĂ©veloppement continu des systĂšmes laser de haute puissanceet de haute intensitĂ©, ont amenĂ© Ă  envisager la production de radioisotopes par laser. Eneffet, l’accĂ©lĂ©ration d’ions par laser permettrait d’abaisser les coĂ»ts de production mais aussid’obtenir un systĂšme beaucoup plus flexible qu’un accĂ©lĂ©rateur conventionnel: en choisissantles cibles irradiĂ©es selon la gamme d’énergie du faisceau d’ions obtenu par accĂ©lĂ©ration laser,la crĂ©ation de nombreux radioisotopes deviendrait possible avec un unique et mĂȘme systĂšme:l’accĂ©lĂ©rateur laser.L’objectif de cette thĂšse est, dans un premier temps, d’optimiser l’accĂ©lĂ©ration d’ionspar laser ultra haute intensitĂ©, notamment par choc Ă©lectrostatique dans les jets de gaz etd’explorer la production de radioisotopes Ă  l’aide de ce faisceau d’ions dit primaire. L’ob-tention d’un faisceau d’ions accĂ©lĂ©rĂ©s avec un nombre important d’ions dans une certainegamme d’énergie est une Ă©tape cruciale dans le but de produire d’un radioisotope afin defaire correspondre le spectre Ă©nergĂ©tique de ce faisceau d’ions avec les maxima des sectionsefficaces de production du radioisotope souhaitĂ©. La premiĂšre partie de cette thĂšse s’inscritdonc dans la production de ce type de faisceau d’ions et son optimisation en termes denombre et d’énergie (avec un maximum d’ions accĂ©lĂ©rĂ©s dans des structures de type quasimono-Ă©nergĂ©tiques). L’utilisation de cibles gazeuses est privilĂ©giĂ©e dans ce travail puisqueces derniĂšres permettent de profiter des lasers Ă  hauts taux de rĂ©pĂ©tition qui, eux seuls, per-mettront de concurrencer les cyclotrons en terme de courant pour le faisceau d’ions primaire.Cette Ă©tude s’appuie sur des simulations numĂ©riques permettant de modĂ©liser l’accĂ©lĂ©-ration d’ions lors de l’interaction du laser avec des cibles solides ou gazeuses (via un codeParticle-In-Cell) et la gĂ©nĂ©ration des radioisotopes lors de la propagation de ces ions dansune cible secondaire (via un code Monte Carlo). La production in situ de radioisotopes parĂ©clairement direct d’une cible est aussi Ă©tudiĂ©e Ă  l’aide de ces deux types de codes. CesdĂ©veloppements numĂ©riques ont permis de dimensionner et d’analyser des expĂ©riences surdes installations laser actuelles mais aussi de servir de base pour de futures expĂ©riences.The production of radioisotopes in relevance with the nuclear medecine community is nowadays warranted by cyclotrons. These radioisotopes, once produced, are injectedin the patient body for curative or diagnostics purpose. For ÎČ + emitters, the positron, reactingwith matter electrons, annihilates in two gamma photons. These two photons, emittedat 180_ are detected by coincidence and allow to know the exact position of the emissionpoint and to map the patient organ. For ÎČ - or α emitters, the ionizing radiation emitted isused to kill the cancer cells. The radioisotopes related to nuclear medecine have to present a short lifetime so as not to not drive collateral damages for the patient. Thus, a production closed to the nuclear medecine department is compulsory. This is the case for the Fluor-18 for example that is produced inside the hospitals by little cyclotrons. Other radioisotopes require more important means of production (cyclortron as ARRONAX in Nantes, nuclear power plants for the Tc-99) and have to be delivered every week to the nuclear medecine department. The delivery times, the hardware installation and maintenance costs added to the aging of nuclear reactors drive scientists to consider other facilities for radioisotopes production. The actual laser systems are known to accelerate ions from laser-plasma interaction. Actually, laser-driven ion acceleration is an attractive way to realize compact and affordable ion sources for many exciting applications, including to produce radioisotopes in relevance with the nuclear medecine community. We propose to use ion beams to produce radioisotopes in a secondary target. At first, we explore and optimize laser-driven ion acceleration, especially by collisionless electrostatic shocks in a gas jet. The solid targets are also considered in this work. This ion beam requires particular characteristics on its energy spectrum and its flux to produce radioisotopes in a secondary target. The ion energy distribution has to match the higher cross section values for the nuclear reaction producing the desired radioisotope. So the first part of this work consists of optimizing the production of an ion beam with a high flux and with a high energy. The use of gas jet targets is the best way to take advantage of high repetition rates laser systems since the final goal is to replace cyclotrons by a more flexible device: laser beam. A maximum of laser energy has to be transfered to the solid target or to the gas jet target in order to make the laser ion acceleration process more efficient. The acceleration efficiency depends on the target density profile (presence of a pre plasma in the solid target case or the gas jet wings) and on the acceleration mechanism. All these questions are studied in the first part of this manuscript. We propose to strongly improve the ion acceleration with maximum ion energy of tens of MeV thanks to the interaction of a relativistic laser pulse with a tailored gas jet target. The production of a beam of energetic alpha particles is studied in this work, from an helium jet target and also from the proton-boron fusion reaction. We present the numerical chain, that we developed at CELIA during this three-year research process, formed by an hydrodynamic code (TROLL [1] or CHIC [2]) that allows to simulate the interaction between the target and the laser pre-pulse, the Particle-In-Cell (PIC) code Smilei [3] for the interaction between the main pulse and the plasma, and the MONTE-CARLO code FLUKA [4] for the propagation of the ion beam in the secondary target and nuclear reactions that allow to produce radioisotopes. The results of radiosiotope production are analysed, in terms of ion acceleration mechanisms and of targets properties

    Optimisation de l’accĂ©lĂ©ration d’ions par choc Ă©lectrostatique dans un jet de gaz et application Ă  la production de radioisotopes

    No full text
    The production of radioisotopes in relevance with the nuclear medecine community is nowadays warranted by cyclotrons. These radioisotopes, once produced, are injectedin the patient body for curative or diagnostics purpose. For ÎČ + emitters, the positron, reactingwith matter electrons, annihilates in two gamma photons. These two photons, emittedat 180_ are detected by coincidence and allow to know the exact position of the emissionpoint and to map the patient organ. For ÎČ - or α emitters, the ionizing radiation emitted isused to kill the cancer cells. The radioisotopes related to nuclear medecine have to present a short lifetime so as not to not drive collateral damages for the patient. Thus, a production closed to the nuclear medecine department is compulsory. This is the case for the Fluor-18 for example that is produced inside the hospitals by little cyclotrons. Other radioisotopes require more important means of production (cyclortron as ARRONAX in Nantes, nuclear power plants for the Tc-99) and have to be delivered every week to the nuclear medecine department. The delivery times, the hardware installation and maintenance costs added to the aging of nuclear reactors drive scientists to consider other facilities for radioisotopes production. The actual laser systems are known to accelerate ions from laser-plasma interaction. Actually, laser-driven ion acceleration is an attractive way to realize compact and affordable ion sources for many exciting applications, including to produce radioisotopes in relevance with the nuclear medecine community. We propose to use ion beams to produce radioisotopes in a secondary target. At first, we explore and optimize laser-driven ion acceleration, especially by collisionless electrostatic shocks in a gas jet. The solid targets are also considered in this work. This ion beam requires particular characteristics on its energy spectrum and its flux to produce radioisotopes in a secondary target. The ion energy distribution has to match the higher cross section values for the nuclear reaction producing the desired radioisotope. So the first part of this work consists of optimizing the production of an ion beam with a high flux and with a high energy. The use of gas jet targets is the best way to take advantage of high repetition rates laser systems since the final goal is to replace cyclotrons by a more flexible device: laser beam. A maximum of laser energy has to be transfered to the solid target or to the gas jet target in order to make the laser ion acceleration process more efficient. The acceleration efficiency depends on the target density profile (presence of a pre plasma in the solid target case or the gas jet wings) and on the acceleration mechanism. All these questions are studied in the first part of this manuscript. We propose to strongly improve the ion acceleration with maximum ion energy of tens of MeV thanks to the interaction of a relativistic laser pulse with a tailored gas jet target. The production of a beam of energetic alpha particles is studied in this work, from an helium jet target and also from the proton-boron fusion reaction. We present the numerical chain, that we developed at CELIA during this three-year research process, formed by an hydrodynamic code (TROLL [1] or CHIC [2]) that allows to simulate the interaction between the target and the laser pre-pulse, the Particle-In-Cell (PIC) code Smilei [3] for the interaction between the main pulse and the plasma, and the MONTE-CARLO code FLUKA [4] for the propagation of the ion beam in the secondary target and nuclear reactions that allow to produce radioisotopes. The results of radiosiotope production are analysed, in terms of ion acceleration mechanisms and of targets properties.La production de radioisotopes, notamment d’intĂ©rĂȘt mĂ©dical, est aujourd’huiprincipalement assurĂ©e par des accĂ©lĂ©rateurs conventionnels circulaires: les cyclotrons. Cesisotopes radioactifs, une fois produits, sont injectĂ©s dans le corps du patient Ă  des fins diag-nostique ou curative. Pour des radioisotopes Ă©metteurs Beta+, les positrons Ă©mis s’annihilenten deux gammas de façon instantannĂ©e par rĂ©action avec les Ă©lectrons de la matiĂšre. Cesdeux gammas Ă©mis Ă  180° sont dĂ©tectĂ©s en coincidence et permettent de remonter au pointd’émission du positron et ainsi de cartographier l’organe du patient. Pour des radioisotopesĂ©metteurs Beta-, alpha et gamma, les rayonnements ionisants Ă©mis permettent quant Ă  eux de traiter le patient en irradiant les cellules cancĂ©reuses.Les radioisotopes utilisĂ©s en mĂ©decine nuclĂ©aire doivent prĂ©senter une courte durĂ©e de vieafin de ne pas engendrer de dommages collatĂ©raux chez le patient. Cette courte durĂ©e de vieimpose de les produire directement dans les servives de mĂ©decine nuclĂ©aire pour les plus cou-rants (Fluor-18 en diagnostic) grĂące Ă  des cyclotrons consĂ©quents en termes d’encombrementet d’investissement. D’autres radioisotopes utilisĂ©s nĂ©cessitent des moyens de production en-core plus importants (cyclotron de type ARRONAX, rĂ©acteurs nuclĂ©aires pour le Technicium99) et doivent ĂȘtre livrĂ©s dans les hopitaux de façon rĂ©guliĂšre. Les dĂ©lais d’acheminement,les coĂ»ts de production et de maintenance des cyclotrons, le vieillissement des rĂ©acteursnuclĂ©aires, parallĂšlement au dĂ©veloppement continu des systĂšmes laser de haute puissanceet de haute intensitĂ©, ont amenĂ© Ă  envisager la production de radioisotopes par laser. Eneffet, l’accĂ©lĂ©ration d’ions par laser permettrait d’abaisser les coĂ»ts de production mais aussid’obtenir un systĂšme beaucoup plus flexible qu’un accĂ©lĂ©rateur conventionnel: en choisissantles cibles irradiĂ©es selon la gamme d’énergie du faisceau d’ions obtenu par accĂ©lĂ©ration laser,la crĂ©ation de nombreux radioisotopes deviendrait possible avec un unique et mĂȘme systĂšme:l’accĂ©lĂ©rateur laser.L’objectif de cette thĂšse est, dans un premier temps, d’optimiser l’accĂ©lĂ©ration d’ionspar laser ultra haute intensitĂ©, notamment par choc Ă©lectrostatique dans les jets de gaz etd’explorer la production de radioisotopes Ă  l’aide de ce faisceau d’ions dit primaire. L’ob-tention d’un faisceau d’ions accĂ©lĂ©rĂ©s avec un nombre important d’ions dans une certainegamme d’énergie est une Ă©tape cruciale dans le but de produire d’un radioisotope afin defaire correspondre le spectre Ă©nergĂ©tique de ce faisceau d’ions avec les maxima des sectionsefficaces de production du radioisotope souhaitĂ©. La premiĂšre partie de cette thĂšse s’inscritdonc dans la production de ce type de faisceau d’ions et son optimisation en termes denombre et d’énergie (avec un maximum d’ions accĂ©lĂ©rĂ©s dans des structures de type quasimono-Ă©nergĂ©tiques). L’utilisation de cibles gazeuses est privilĂ©giĂ©e dans ce travail puisqueces derniĂšres permettent de profiter des lasers Ă  hauts taux de rĂ©pĂ©tition qui, eux seuls, per-mettront de concurrencer les cyclotrons en terme de courant pour le faisceau d’ions primaire.Cette Ă©tude s’appuie sur des simulations numĂ©riques permettant de modĂ©liser l’accĂ©lĂ©-ration d’ions lors de l’interaction du laser avec des cibles solides ou gazeuses (via un codeParticle-In-Cell) et la gĂ©nĂ©ration des radioisotopes lors de la propagation de ces ions dansune cible secondaire (via un code Monte Carlo). La production in situ de radioisotopes parĂ©clairement direct d’une cible est aussi Ă©tudiĂ©e Ă  l’aide de ces deux types de codes. CesdĂ©veloppements numĂ©riques ont permis de dimensionner et d’analyser des expĂ©riences surdes installations laser actuelles mais aussi de servir de base pour de futures expĂ©riences

    Optimisation de l’accĂ©lĂ©ration d’ions par choc Ă©lectrostatique dans un jet de gaz et application Ă  la production de radioisotopes

    No full text
    The production of radioisotopes in relevance with the nuclear medecine community is nowadays warranted by cyclotrons. These radioisotopes, once produced, are injectedin the patient body for curative or diagnostics purpose. For ÎČ + emitters, the positron, reactingwith matter electrons, annihilates in two gamma photons. These two photons, emittedat 180_ are detected by coincidence and allow to know the exact position of the emissionpoint and to map the patient organ. For ÎČ - or α emitters, the ionizing radiation emitted isused to kill the cancer cells. The radioisotopes related to nuclear medecine have to present a short lifetime so as not to not drive collateral damages for the patient. Thus, a production closed to the nuclear medecine department is compulsory. This is the case for the Fluor-18 for example that is produced inside the hospitals by little cyclotrons. Other radioisotopes require more important means of production (cyclortron as ARRONAX in Nantes, nuclear power plants for the Tc-99) and have to be delivered every week to the nuclear medecine department. The delivery times, the hardware installation and maintenance costs added to the aging of nuclear reactors drive scientists to consider other facilities for radioisotopes production. The actual laser systems are known to accelerate ions from laser-plasma interaction. Actually, laser-driven ion acceleration is an attractive way to realize compact and affordable ion sources for many exciting applications, including to produce radioisotopes in relevance with the nuclear medecine community. We propose to use ion beams to produce radioisotopes in a secondary target. At first, we explore and optimize laser-driven ion acceleration, especially by collisionless electrostatic shocks in a gas jet. The solid targets are also considered in this work. This ion beam requires particular characteristics on its energy spectrum and its flux to produce radioisotopes in a secondary target. The ion energy distribution has to match the higher cross section values for the nuclear reaction producing the desired radioisotope. So the first part of this work consists of optimizing the production of an ion beam with a high flux and with a high energy. The use of gas jet targets is the best way to take advantage of high repetition rates laser systems since the final goal is to replace cyclotrons by a more flexible device: laser beam. A maximum of laser energy has to be transfered to the solid target or to the gas jet target in order to make the laser ion acceleration process more efficient. The acceleration efficiency depends on the target density profile (presence of a pre plasma in the solid target case or the gas jet wings) and on the acceleration mechanism. All these questions are studied in the first part of this manuscript. We propose to strongly improve the ion acceleration with maximum ion energy of tens of MeV thanks to the interaction of a relativistic laser pulse with a tailored gas jet target. The production of a beam of energetic alpha particles is studied in this work, from an helium jet target and also from the proton-boron fusion reaction. We present the numerical chain, that we developed at CELIA during this three-year research process, formed by an hydrodynamic code (TROLL [1] or CHIC [2]) that allows to simulate the interaction between the target and the laser pre-pulse, the Particle-In-Cell (PIC) code Smilei [3] for the interaction between the main pulse and the plasma, and the MONTE-CARLO code FLUKA [4] for the propagation of the ion beam in the secondary target and nuclear reactions that allow to produce radioisotopes. The results of radiosiotope production are analysed, in terms of ion acceleration mechanisms and of targets properties.La production de radioisotopes, notamment d’intĂ©rĂȘt mĂ©dical, est aujourd’huiprincipalement assurĂ©e par des accĂ©lĂ©rateurs conventionnels circulaires: les cyclotrons. Cesisotopes radioactifs, une fois produits, sont injectĂ©s dans le corps du patient Ă  des fins diag-nostique ou curative. Pour des radioisotopes Ă©metteurs Beta+, les positrons Ă©mis s’annihilenten deux gammas de façon instantannĂ©e par rĂ©action avec les Ă©lectrons de la matiĂšre. Cesdeux gammas Ă©mis Ă  180° sont dĂ©tectĂ©s en coincidence et permettent de remonter au pointd’émission du positron et ainsi de cartographier l’organe du patient. Pour des radioisotopesĂ©metteurs Beta-, alpha et gamma, les rayonnements ionisants Ă©mis permettent quant Ă  eux de traiter le patient en irradiant les cellules cancĂ©reuses.Les radioisotopes utilisĂ©s en mĂ©decine nuclĂ©aire doivent prĂ©senter une courte durĂ©e de vieafin de ne pas engendrer de dommages collatĂ©raux chez le patient. Cette courte durĂ©e de vieimpose de les produire directement dans les servives de mĂ©decine nuclĂ©aire pour les plus cou-rants (Fluor-18 en diagnostic) grĂące Ă  des cyclotrons consĂ©quents en termes d’encombrementet d’investissement. D’autres radioisotopes utilisĂ©s nĂ©cessitent des moyens de production en-core plus importants (cyclotron de type ARRONAX, rĂ©acteurs nuclĂ©aires pour le Technicium99) et doivent ĂȘtre livrĂ©s dans les hopitaux de façon rĂ©guliĂšre. Les dĂ©lais d’acheminement,les coĂ»ts de production et de maintenance des cyclotrons, le vieillissement des rĂ©acteursnuclĂ©aires, parallĂšlement au dĂ©veloppement continu des systĂšmes laser de haute puissanceet de haute intensitĂ©, ont amenĂ© Ă  envisager la production de radioisotopes par laser. Eneffet, l’accĂ©lĂ©ration d’ions par laser permettrait d’abaisser les coĂ»ts de production mais aussid’obtenir un systĂšme beaucoup plus flexible qu’un accĂ©lĂ©rateur conventionnel: en choisissantles cibles irradiĂ©es selon la gamme d’énergie du faisceau d’ions obtenu par accĂ©lĂ©ration laser,la crĂ©ation de nombreux radioisotopes deviendrait possible avec un unique et mĂȘme systĂšme:l’accĂ©lĂ©rateur laser.L’objectif de cette thĂšse est, dans un premier temps, d’optimiser l’accĂ©lĂ©ration d’ionspar laser ultra haute intensitĂ©, notamment par choc Ă©lectrostatique dans les jets de gaz etd’explorer la production de radioisotopes Ă  l’aide de ce faisceau d’ions dit primaire. L’ob-tention d’un faisceau d’ions accĂ©lĂ©rĂ©s avec un nombre important d’ions dans une certainegamme d’énergie est une Ă©tape cruciale dans le but de produire d’un radioisotope afin defaire correspondre le spectre Ă©nergĂ©tique de ce faisceau d’ions avec les maxima des sectionsefficaces de production du radioisotope souhaitĂ©. La premiĂšre partie de cette thĂšse s’inscritdonc dans la production de ce type de faisceau d’ions et son optimisation en termes denombre et d’énergie (avec un maximum d’ions accĂ©lĂ©rĂ©s dans des structures de type quasimono-Ă©nergĂ©tiques). L’utilisation de cibles gazeuses est privilĂ©giĂ©e dans ce travail puisqueces derniĂšres permettent de profiter des lasers Ă  hauts taux de rĂ©pĂ©tition qui, eux seuls, per-mettront de concurrencer les cyclotrons en terme de courant pour le faisceau d’ions primaire.Cette Ă©tude s’appuie sur des simulations numĂ©riques permettant de modĂ©liser l’accĂ©lĂ©-ration d’ions lors de l’interaction du laser avec des cibles solides ou gazeuses (via un codeParticle-In-Cell) et la gĂ©nĂ©ration des radioisotopes lors de la propagation de ces ions dansune cible secondaire (via un code Monte Carlo). La production in situ de radioisotopes parĂ©clairement direct d’une cible est aussi Ă©tudiĂ©e Ă  l’aide de ces deux types de codes. CesdĂ©veloppements numĂ©riques ont permis de dimensionner et d’analyser des expĂ©riences surdes installations laser actuelles mais aussi de servir de base pour de futures expĂ©riences

    Laser driven ion acceleration by electrostatic shocks in gas jet targets and radioisotopes production.

    No full text
    La production de radioisotopes, notamment d’intĂ©rĂȘt mĂ©dical, est aujourd’huiprincipalement assurĂ©e par des accĂ©lĂ©rateurs conventionnels circulaires: les cyclotrons. Cesisotopes radioactifs, une fois produits, sont injectĂ©s dans le corps du patient Ă  des fins diag-nostique ou curative. Pour des radioisotopes Ă©metteurs Beta+, les positrons Ă©mis s’annihilenten deux gammas de façon instantannĂ©e par rĂ©action avec les Ă©lectrons de la matiĂšre. Cesdeux gammas Ă©mis Ă  180° sont dĂ©tectĂ©s en coincidence et permettent de remonter au pointd’émission du positron et ainsi de cartographier l’organe du patient. Pour des radioisotopesĂ©metteurs Beta-, alpha et gamma, les rayonnements ionisants Ă©mis permettent quant Ă  eux de traiter le patient en irradiant les cellules cancĂ©reuses.Les radioisotopes utilisĂ©s en mĂ©decine nuclĂ©aire doivent prĂ©senter une courte durĂ©e de vieafin de ne pas engendrer de dommages collatĂ©raux chez le patient. Cette courte durĂ©e de vieimpose de les produire directement dans les servives de mĂ©decine nuclĂ©aire pour les plus cou-rants (Fluor-18 en diagnostic) grĂące Ă  des cyclotrons consĂ©quents en termes d’encombrementet d’investissement. D’autres radioisotopes utilisĂ©s nĂ©cessitent des moyens de production en-core plus importants (cyclotron de type ARRONAX, rĂ©acteurs nuclĂ©aires pour le Technicium99) et doivent ĂȘtre livrĂ©s dans les hopitaux de façon rĂ©guliĂšre. Les dĂ©lais d’acheminement,les coĂ»ts de production et de maintenance des cyclotrons, le vieillissement des rĂ©acteursnuclĂ©aires, parallĂšlement au dĂ©veloppement continu des systĂšmes laser de haute puissanceet de haute intensitĂ©, ont amenĂ© Ă  envisager la production de radioisotopes par laser. Eneffet, l’accĂ©lĂ©ration d’ions par laser permettrait d’abaisser les coĂ»ts de production mais aussid’obtenir un systĂšme beaucoup plus flexible qu’un accĂ©lĂ©rateur conventionnel: en choisissantles cibles irradiĂ©es selon la gamme d’énergie du faisceau d’ions obtenu par accĂ©lĂ©ration laser,la crĂ©ation de nombreux radioisotopes deviendrait possible avec un unique et mĂȘme systĂšme:l’accĂ©lĂ©rateur laser.L’objectif de cette thĂšse est, dans un premier temps, d’optimiser l’accĂ©lĂ©ration d’ionspar laser ultra haute intensitĂ©, notamment par choc Ă©lectrostatique dans les jets de gaz etd’explorer la production de radioisotopes Ă  l’aide de ce faisceau d’ions dit primaire. L’ob-tention d’un faisceau d’ions accĂ©lĂ©rĂ©s avec un nombre important d’ions dans une certainegamme d’énergie est une Ă©tape cruciale dans le but de produire d’un radioisotope afin defaire correspondre le spectre Ă©nergĂ©tique de ce faisceau d’ions avec les maxima des sectionsefficaces de production du radioisotope souhaitĂ©. La premiĂšre partie de cette thĂšse s’inscritdonc dans la production de ce type de faisceau d’ions et son optimisation en termes denombre et d’énergie (avec un maximum d’ions accĂ©lĂ©rĂ©s dans des structures de type quasimono-Ă©nergĂ©tiques). L’utilisation de cibles gazeuses est privilĂ©giĂ©e dans ce travail puisqueces derniĂšres permettent de profiter des lasers Ă  hauts taux de rĂ©pĂ©tition qui, eux seuls, per-mettront de concurrencer les cyclotrons en terme de courant pour le faisceau d’ions primaire.Cette Ă©tude s’appuie sur des simulations numĂ©riques permettant de modĂ©liser l’accĂ©lĂ©-ration d’ions lors de l’interaction du laser avec des cibles solides ou gazeuses (via un codeParticle-In-Cell) et la gĂ©nĂ©ration des radioisotopes lors de la propagation de ces ions dansune cible secondaire (via un code Monte Carlo). La production in situ de radioisotopes parĂ©clairement direct d’une cible est aussi Ă©tudiĂ©e Ă  l’aide de ces deux types de codes. CesdĂ©veloppements numĂ©riques ont permis de dimensionner et d’analyser des expĂ©riences surdes installations laser actuelles mais aussi de servir de base pour de futures expĂ©riences.The production of radioisotopes in relevance with the nuclear medecine community is nowadays warranted by cyclotrons. These radioisotopes, once produced, are injectedin the patient body for curative or diagnostics purpose. For ÎČ + emitters, the positron, reactingwith matter electrons, annihilates in two gamma photons. These two photons, emittedat 180_ are detected by coincidence and allow to know the exact position of the emissionpoint and to map the patient organ. For ÎČ - or α emitters, the ionizing radiation emitted isused to kill the cancer cells. The radioisotopes related to nuclear medecine have to present a short lifetime so as not to not drive collateral damages for the patient. Thus, a production closed to the nuclear medecine department is compulsory. This is the case for the Fluor-18 for example that is produced inside the hospitals by little cyclotrons. Other radioisotopes require more important means of production (cyclortron as ARRONAX in Nantes, nuclear power plants for the Tc-99) and have to be delivered every week to the nuclear medecine department. The delivery times, the hardware installation and maintenance costs added to the aging of nuclear reactors drive scientists to consider other facilities for radioisotopes production. The actual laser systems are known to accelerate ions from laser-plasma interaction. Actually, laser-driven ion acceleration is an attractive way to realize compact and affordable ion sources for many exciting applications, including to produce radioisotopes in relevance with the nuclear medecine community. We propose to use ion beams to produce radioisotopes in a secondary target. At first, we explore and optimize laser-driven ion acceleration, especially by collisionless electrostatic shocks in a gas jet. The solid targets are also considered in this work. This ion beam requires particular characteristics on its energy spectrum and its flux to produce radioisotopes in a secondary target. The ion energy distribution has to match the higher cross section values for the nuclear reaction producing the desired radioisotope. So the first part of this work consists of optimizing the production of an ion beam with a high flux and with a high energy. The use of gas jet targets is the best way to take advantage of high repetition rates laser systems since the final goal is to replace cyclotrons by a more flexible device: laser beam. A maximum of laser energy has to be transfered to the solid target or to the gas jet target in order to make the laser ion acceleration process more efficient. The acceleration efficiency depends on the target density profile (presence of a pre plasma in the solid target case or the gas jet wings) and on the acceleration mechanism. All these questions are studied in the first part of this manuscript. We propose to strongly improve the ion acceleration with maximum ion energy of tens of MeV thanks to the interaction of a relativistic laser pulse with a tailored gas jet target. The production of a beam of energetic alpha particles is studied in this work, from an helium jet target and also from the proton-boron fusion reaction. We present the numerical chain, that we developed at CELIA during this three-year research process, formed by an hydrodynamic code (TROLL [1] or CHIC [2]) that allows to simulate the interaction between the target and the laser pre-pulse, the Particle-In-Cell (PIC) code Smilei [3] for the interaction between the main pulse and the plasma, and the MONTE-CARLO code FLUKA [4] for the propagation of the ion beam in the secondary target and nuclear reactions that allow to produce radioisotopes. The results of radiosiotope production are analysed, in terms of ion acceleration mechanisms and of targets properties

    In-Target Proton−Boron Nuclear Fusion Using a PW-Class Laser

    No full text
    none15siNuclear reactions between protons and boron-11 nuclei (p–B fusion) that were used to yield energetic α-particles were initiated in a plasma that was generated by the interaction between a PW-class laser operating at relativistic intensities (~3 × 1019 W/cm2) and a 0.2-mm thick boron nitride (BN) target. A high p–B fusion reaction rate and hence, a large α-particle flux was generated and measured, thanks to a proton stream accelerated at the target’s front surface. This was the first proof of principle experiment to demonstrate the efficient generation of α-particles (~1010/sr) through p–B fusion reactions using a PW-class laser in the “in-target” geometry.noneDaniele Margarone, Julien Bonvalet , Lorenzo Giuffrida, Alessio Morace , Vasiliki Kantarelou , Marco Tosca, Didier Raffestin, Philippe Nicolai, Antonino Picciotto, Yuki Abe, Yasunobu Arikawa, Shinsuke Fujioka, Yuji Fukuda, Yasuhiro Kuramitsu, Hideaki Habara and Dimitri Batani.Margarone, Daniele; Bonvalet, Julien; Giuffrida, Lorenzo; Morace, Alessio; Kantarelou, Vasiliki; Tosca, Marco; Raffestin, Didier; Nicolai, Philippe; Picciotto, Antonino; Abe, Yuki; Arikawa, Yasunobu; Fujioka, Shinsuke; Fukuda, Yuji; Kuramitsu, Yasuhiro; Batani., Hideaki Habara and Dimitr

    Generation of α-Particle Beams With a Multi-kJ, Peta-Watt Class Laser System

    No full text
    We present preliminary results on generation of energetic α-particles driven by lasers. The experiment was performed at the Institute of Laser Engineering in Osaka using the short-pulse, high-intensity, high-energy, PW-class laser. The laser pulse was focused onto a thin plastic foil (pitcher) to generate a proton beam by the well-known TNSA mechanism which, in turn, was impinging onto a boron-nitride (BN) target (catcher) to generated alpha-particles as a result of proton-boron nuclear fusion events. Our results demonstrate generation of α-particles with energies in the range 8–10 MeV and with a flux around 5 × 109 sr−1

    Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer

    Get PDF
    43siAside from PD-L1 expression, biomarkers of response to immune checkpoint inhibitors (ICIs) in non-small-cell lung cancer (NSCLC) are needed. In a previous retrospective analysis, we documented that fecal Akkermansia muciniphila (Akk) was associated with clinical benefit of ICI in patients with NSCLC or kidney cancer. In the current study, we performed shotgun-metagenomics-based microbiome profiling in a large cohort of patients with advanced NSCLC (n = 338) treated with first- or second-line ICIs to prospectively validate the predictive value of fecal Akk. Baseline stool Akk was associated with increased objective response rates and overall survival in multivariate analyses, independent of PD-L1 expression, antibiotics, and performance status. Intestinal Akk was accompanied by a richer commensalism, including Eubacterium hallii and Bifidobacterium adolescentis, and a more inflamed tumor microenvironment in a subset of patients. However, antibiotic use (20% of cases) coincided with a relative dominance of Akk above 4.8% accompanied with the genus Clostridium, both associated with resistance to ICI. Our study shows significant differences in relative abundance of Akk that may represent potential biomarkers to refine patient stratification in future studies.reservedopenDerosa, Lisa; Routy, Bertrand; Thomas, Andrew Maltez; Iebba, Valerio; Zalcman, Gerard; Friard, Sylvie; Mazieres, Julien; Audigier-Valette, Clarisse; Moro-Sibilot, Denis; Goldwasser, François; Silva, Carolina Alves Costa; Terrisse, Safae; Bonvalet, Melodie; Scherpereel, Arnaud; Pegliasco, Hervé; Richard, Corentin; Ghiringhelli, François; Elkrief, Arielle; Desilets, Antoine; Blanc-Durand, Felix; Cumbo, Fabio; Blanco, Aitor; Boidot, Romain; Chevrier, Sandy; DaillÚre, Romain; Kroemer, Guido; Alla, Laurie; Pons, Nicolas; Le Chatelier, Emmanuelle; Galleron, Nathalie; Roume, Hugo; Dubuisson, Agathe; Bouchard, Nicole; Messaoudene, Meriem; Drubay, Damien; Deutsch, Eric; Barlesi, Fabrice; Planchard, David; Segata, Nicola; Martinez, Stéphanie; Zitvogel, Laurence; Soria, Jean-Charles; Besse, BenjaminDerosa, Lisa; Routy, Bertrand; Thomas, Andrew Maltez; Iebba, Valerio; Zalcman, Gerard; Friard, Sylvie; Mazieres, Julien; Audigier-Valette, Clarisse; Moro-Sibilot, Denis; Goldwasser, François; Silva, Carolina Alves Costa; Terrisse, Safae; Bonvalet, Melodie; Scherpereel, Arnaud; Pegliasco, Hervé; Richard, Corentin; Ghiringhelli, François; Elkrief, Arielle; Desilets, Antoine; Blanc-Durand, Felix; Cumbo, Fabio; Blanco, Aitor; Boidot, Romain; Chevrier, Sandy; DaillÚre, Romain; Kroemer, Guido; Alla, Laurie; Pons, Nicolas; Le Chatelier, Emmanuelle; Galleron, Nathalie; Roume, Hugo; Dubuisson, Agathe; Bouchard, Nicole; Messaoudene, Meriem; Drubay, Damien; Deutsch, Eric; Barlesi, Fabrice; Planchard, David; Segata, Nicola; Martinez, Stéphanie; Zitvogel, Laurence; Soria, Jean-Charles; Besse, Benjami
    corecore