476 research outputs found

    Fatal cardiac perforation and pulmonary embolism of leaked cement after percutaneous vertebroplasty

    Get PDF
    Percutaneous vertebroplasty consists of percutaneous injection of polymethylmethacrylate (PMMA) via a transpedicular approach for the treatment of collapsed osteoporotic or metastatic vertebrae. Even if percutaneous vertebroplasty is considered to be minimally invasive, threatening complications can occur. Cement leakage is the most common complication of percutaneous vertebroplasty. Rigorous patient selection and individual therapeutic strategy may reduce the occurrence of leakage, in particular the risk of cement entry into the venous system and the spinal canal is the potent major hazard of this technique. Cement pulmonary and cardiac embolism are reported in literature as a cause of unexpected death after percutaneous vertebroplasty. Authors report a fatal case of pulmonary cement embolization occurred after vertebroplasty with haemopericardium, due to the perforation of the right atrium wall from a cement solidified fragment. A complete post mortem examination documented the presence of multiple cement fragments in the pulmonary arteries and transmural perforation of the wall of the right atrium by a whitish needle-like foreign body. Pulmonary microembolization was observed under polarized ligh

    Hospital autopsy for prevention of sudden cardiac death

    Get PDF
    In the past 20 years, cardiovascular mortality has decreased in highincome countries in response to the adoption of preventive measures to reduce the burden of coronary artery disease and heart failure. Despite these encouraging results, cardiovascular diseases are responsible for approximately 17 million deaths every year in the world, approximately 25% of which are sudden cardiac death. The risk of sudden cardiac death is higher in men than in women, and it increases with age due to the higher prevalence of coronary artery disease in older age. Accordingly, the sudden cardiac death rate is estimated to range from 1.40 per 100 000 person-years in women to 6.68 per 100 000 person-years in men. Sudden cardiac death in younger individuals has an estimated incidence of 0.46\u20133.7 events per 100 000 person-years, corresponding to a rough estimate of 1100\u20139000 deaths in Europe and 800\u20136200 deaths in the USA every year. Cardiac diseases associated with sudden cardiac death differ in young vs. older individuals. In the young there is a predominance of channelopathies and cardiomyopathies, myocarditis and substance abuse, while in older populations, chronic degenerative diseases predominate. In younger persons, the cause of sudden cardiac death may be elusive even after autopsy, because conditions such as inherited channelopathies or drug-induced arrhythmias that are devoid of structural abnormalities are epidemiologically relevant in this age group. Identification of the cause of an unexpected death provides the family with partial understanding and rationalization of the unexpected tragedy, which facilitates the coping process and allows an understanding of whether the risk of sudden death may extend to family members. Accordingly, author present their experience with autopsies of unexplained sudden death young victims in which a cardiac origin was suspected and the relevance of a standardized protocol for heart examination and histological sampling, as well as for toxicology and molecular investigation

    Impairment of lysosomal activity as a therapeutic modality targeting cancer stem cells of embryonal rhabdomyosarcoma cell line RD.

    Get PDF
    Rhabdomyosarcoma is the most frequent soft tissue sarcoma in children and adolescents, with a high rate of relapse that dramatically affects the clinical outcome. Multiagent chemotherapy, in combination with surgery and/or radiation therapy, is the treatment of choice. However, the relapse rate is disappointingly high and identification of new therapeutic tools is urgently needed. Under this respect, the selective block of key features of cancer stem cells (CSC) appears particularly promising. In this study, we isolated rhabdomyosarcoma CSC with stem-like features (high expression of NANOG and OCT3/ 4, self-renewal ability, multipotency). Rhabdomyosarcoma CSC showed higher invasive ability and a reduced cytotoxicity to doxorubicin in comparison to native cells, through a mechanism unrelated to the classical multidrug resistance process. This was dependent on a high level of lysosome acidity mediated by a high expression of vacuolar ATPase (V-ATPase). Since it was not associated with other paediatric cancers, like Ewing\u2019s sarcoma and neuroblastoma, V-ATPase higher expression in CSC was rhabdomyosarcoma specific. Inhibition of lysosomal acidification by the V-ATPase inhibitor omeprazole, or by specific siRNA silencing, significantly enhanced doxorubicin cytoxicity. Unexpectedly, lysosomal targeting also blocked cell growth and reduced the invasive potential of rhabdomyosarcoma CSC, even at very low doses of omeprazole (10 and 50 mM, respectively). Based on these observations, we propose lysosome acidity as a valuable target to enhance chemosensitivity of rhabdomyosarcoma CSC, and suggest the use of anti-V-ATPase agents in combination with standard regimens as a promising tool for the eradication of minimal residual disease or the prevention of metastatic disease

    Targeting Inflammatory Mediators in Epilepsy: A Systematic Review of Its Molecular Basis and Clinical Applications

    Get PDF
    Introduction: Recent studies prompted the identification of neuroinflammation as a potential target for the treatment of epilepsy, particularly drug-resistant epilepsy, and refractory status epilepticus. This work provides a systematic review of the clinical experience with anti-cytokine agents and agents targeting lymphocytes and aims to evaluate their efficacy and safety for the treatment of refractory epilepsy. Moreover, the review analyzes the main therapeutic perspectives in this field. Methods: A systematic review of the literature was conducted on MEDLINE database. Search terminology was constructed using the name of the specific drug (anakinra, canakinumab, tocilizumab, adalimumab, rituximab, and natalizumab) and the terms “status epilepticus,” “epilepsy,” and “seizure.” The review included clinical trials, prospective studies, case series, and reports published in English between January 2016 and August 2021. The number of patients and their age, study design, specific drugs used, dosage, route, and timing of administration, and patients outcomes were extracted. The data were synthesized through quantitative and qualitative analysis. Results: Our search identified 12 articles on anakinra and canakinumab, for a total of 37 patients with epilepsy (86% febrile infection-related epilepsy syndrome), with reduced seizure frequency or seizure arrest in more than 50% of the patients. The search identified nine articles on the use of tocilizumab (16 patients, 75% refractory status epilepticus), with a high response rate. Only one reference on the use of adalimumab in 11 patients with Rasmussen encephalitis showed complete response in 45% of the cases. Eight articles on rituximab employment sowed a reduced seizure burden in 16/26 patients. Finally, one trial concerning natalizumab evidenced a response in 10/32 participants. Conclusion: The experience with anti-cytokine agents and drugs targeting lymphocytes in epilepsy derives mostly from case reports or series. The use of anti-IL-1, anti-IL-6, and anti-CD20 agents in patients with drug-resistant epilepsy and refractory status epilepticus has shown promising results and a good safety profile. The experience with TNF inhibitors is limited to Rasmussen encephalitis. The use of anti-α4-integrin agents did not show significant effects in refractory focal seizures. Concerning research perspectives, there is increasing interest in the potential use of anti-chemokine and anti-HMGB-1 agents

    α-Synuclein Aggregated with Tau and β-Amyloid in Human Platelets from Healthy Subjects: Correlation with Physical Exercise

    Get PDF
    The loss of protein homeostasis that has been associated with aging leads to altered levels and conformational instability of proteins, which tend to form toxic aggregates. In particular, brain aging presents characteristic patterns of misfolded oligomers, primarily constituted of β-amyloid (Aβ), tau, and α-synuclein (α-syn), which can accumulate in neuronal membranes or extracellular compartments. Such aging-related proteins can also reach peripheral compartments, thus suggesting the possibility to monitor their accumulation in more accessible fluids. In this respect, we have demonstrated that α-syn forms detectable hetero-aggregates with Aβ or tau in red blood cells (RBCs) of healthy subjects. In particular, α-syn levels and its heteromeric interactions are modulated by plasma antioxidant capability (AOC), which increases in turn with physical activity. In order to understand if a specific distribution of misfolded proteins can occur in other blood cells, a cohort of human subjects was enrolled to establish a correlation among AOC, the level of physical exercise and the concentrations of aging-related proteins in platelets. The healthy subjects were divided depending on their level of physical exercise (i.e., athletes and sedentary subjects) and their age (young and older subjects). Herein, aging-related proteins (i.e., α-syn, tau and Aβ) were confirmed to be present in human platelets. Among such proteins, platelet tau concentration was demonstrated to decrease in athletes, while α-syn and Aβ did not correlate with physical exercise. For the first time, α-syn was shown to directly interact with Aβ and tau in platelets, forming detectable hetero-complexes. Interestingly, α-syn interaction with tau was inversely related to plasma AOC and to the level of physical activity. These results suggested that α-syn heterocomplexes, particularly with tau, could represent novel indicators to monitor aging-related proteins in platelets

    The Clinical Impact of Methotrexate-Induced Stroke-Like Neurotoxicity in Paediatric Departments: An Italian Multi-Centre Case-Series

    Get PDF
    Introduction: Stroke-like syndrome (SLS) is a rare subacute neurological complication of intrathecal or high-dose (≥500 mg) Methotrexate (MTX) administration. Its clinical features, evoking acute cerebral ischaemia with fluctuating course symptoms and a possible spontaneous resolution, have elicited interest among the scientific community. However, many issues are still open on the underlying pathogenesis, clinical, and therapeutic management and long-term outcome. Materials and Methods: We retrospectively analyzed clinical, radiological and laboratory records of all patients diagnosed with SLS between 2011 and 2021 at 4 National referral centers for Pediatric Onco-Hematology. Patients with a latency period that was longer than 3 weeks between the last MTX administration of MTX and SLS onset were excluded from the analysis, as were those with unclear etiologies. We assessed symptom severity using a dedicated arbitrary scoring system. Eleven patients were included in the study. Results: The underlying disease was acute lymphoblastic leukemia type B in 10/11 patients, while fibroblastic osteosarcoma was present in a single subject. The median age at diagnosis was 11 years (range 4–34), and 64% of the patients were women. Symptoms occurred after a mean of 9.45 days (± 0.75) since the last MTX administration and lasted between 1 and 96 h. Clinical features included hemiplegia and/or cranial nerves palsy, paraesthesia, movement or speech disorders, and seizure. All patients underwent neuroimaging studies (CT and/or MRI) and EEG. The scoring system revealed an average of 4.9 points (± 2.3), with a median of 5 points (maximum 20 points). We detected a linear correlation between the severity of the disease and age in male patients. Conclusions: SLS is a rare, well-characterized complication of MTX administration. Despite the small sample, we have been able to confirm some of the previous findings in literature. We also identified a linear correlation between age and severity of the disease, which could improve the future clinical management

    Cytokine storm and histopathological findings in 60 cases of COVID-19-related death: from viral load research to immunohistochemical quantification of major players IL-1\u3b2, IL-6, IL-15 and TNF-\u3b1

    Get PDF
    This study involves the histological analysis of samples taken during autopsies in cases of COVID-19 related death to evaluate the inflammatory cytokine response and the tissue localization of the virus in various organs. In all the selected cases, SARS-CoV-2 RT-PCR on swabs collected from the upper (nasopharynx and oropharynx) and/or the lower respiratory (trachea and primary bronchi) tracts were positive. Tissue localization of SARS-CoV-2 was detected using antibodies against the nucleoprotein and the spike protein. Overall, we tested the hypothesis that the overexpression of proinflammatory cytokines plays an important role in the development of COVID-19-associated pneumonia by estimating the expression of multiple cytokines (IL-1\u3b2, IL-6, IL-10, IL-15, TNF-\u3b1, and MCP-1), inflammatory cells (CD4, CD8, CD20, and CD45), and fibrinogen. Immunohistochemical staining showed that endothelial cells expressed IL-1\u3b2 in lung samples obtained from the COVID-19 group (p < 0.001). Similarly, alveolar capillary endothelial cells showed strong and diffuse immunoreactivity for IL-6 and IL-15 in the COVID-19 group (p < 0.001). TNF-\u3b1 showed a higher immunoreactivity in the COVID-19 group than in the control group (p < 0.001). CD8 + T cells where more numerous in the lung samples obtained from the COVID-19 group (p < 0.001). Current evidence suggests that a cytokine storm is the major cause of acute respiratory distress syndrome (ARDS) and multiple organ failure and is consistently linked with fatal outcomes

    Comparison of 3T and 7T Susceptibility-Weighted Angiography of the Substantia Nigra in Diagnosing Parkinson Disease

    Get PDF
    ABSTRACT BACKGROUND AND PURPOSE: Standard neuroimaging fails in defining the anatomy of the substantia nigra and has a marginal role in the diagnosis of Parkinson disease. Recently 7T MR target imaging of the substantia nigra has been useful in diagnosing Parkinson disease. We performed a comparative study to evaluate whether susceptibility-weighted angiography can diagnose Parkinson disease with a 3T scanner

    β1-Syntrophin Modulation by miR-222 in mdx Mice

    Get PDF
    Background: In mdx mice, the absence of dystrophin leads to the deficiency of other components of the dystrophin-glycoprotein complex (DAPC), making skeletal muscle fibers more susceptible to necrosis. The mechanisms involved in the disappearance of the DAPC are not completely understood. The muscles of mdx mice express normal amounts of mRNA for the DAPC components, thus suggesting post-transcriptional regulation. Methodology/Principal Findings: We investigated the hypothesis that DAPC reduction could be associated with the microRNA system. Among the possible microRNAs (miRs) found to be upregulated in the skeletal muscle tissue of mdx compared to wt mice, we demonstrated that miR-222 specifically binds to the 3′-UTR of β1-syntrophin and participates in the downregulation of β1-syntrophin. In addition, we documented an altered regulation of the 3′-UTR of β1-syntrophin in muscle tissue from dystrophic mice. Conclusion/Significance: These results show the importance of the microRNA system in the regulation of DAPC components in dystrophic muscle, and suggest a potential role of miRs in the pathophysiology of dystrophy. © 2010 De Arcangelis et al
    • …
    corecore