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Abstract

Rhabdomyosarcoma is the most frequent soft tissue sarcoma in children and adolescents, with a high rate of relapse that
dramatically affects the clinical outcome. Multiagent chemotherapy, in combination with surgery and/or radiation therapy,
is the treatment of choice. However, the relapse rate is disappointingly high and identification of new therapeutic tools is
urgently needed. Under this respect, the selective block of key features of cancer stem cells (CSC) appears particularly
promising. In this study, we isolated rhabdomyosarcoma CSC with stem-like features (high expression of NANOG and OCT3/
4, self-renewal ability, multipotency). Rhabdomyosarcoma CSC showed higher invasive ability and a reduced cytotoxicity to
doxorubicin in comparison to native cells, through a mechanism unrelated to the classical multidrug resistance process. This
was dependent on a high level of lysosome acidity mediated by a high expression of vacuolar ATPase (V-ATPase). Since it
was not associated with other paediatric cancers, like Ewing’s sarcoma and neuroblastoma, V-ATPase higher expression in
CSC was rhabdomyosarcoma specific. Inhibition of lysosomal acidification by the V-ATPase inhibitor omeprazole, or by
specific siRNA silencing, significantly enhanced doxorubicin cytoxicity. Unexpectedly, lysosomal targeting also blocked cell
growth and reduced the invasive potential of rhabdomyosarcoma CSC, even at very low doses of omeprazole (10 and
50 mM, respectively). Based on these observations, we propose lysosome acidity as a valuable target to enhance
chemosensitivity of rhabdomyosarcoma CSC, and suggest the use of anti-V-ATPase agents in combination with standard
regimens as a promising tool for the eradication of minimal residual disease or the prevention of metastatic disease.

Citation: Salerno M, Avnet S, Bonuccelli G, Hosogi S, Granchi D, et al. (2014) Impairment of Lysosomal Activity as a Therapeutic Modality Targeting Cancer Stem
Cells of Embryonal Rhabdomyosarcoma Cell Line RD. PLoS ONE 9(10): e110340. doi:10.1371/journal.pone.0110340

Editor: Adriano Angelucci, University of L’Aquila, Italy

Received May 2, 2014; Accepted September 21, 2014; Published October 20, 2014

Copyright: � 2014 Salerno et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

Funding: This work was supported by a FIRB grant (RBAP10447J to N.B.) from the Italian Ministry of Education, University and Research; from the Italian
Association for Cancer Research (AIRC 11426 to N.B.); and by the Italian Ministry of the Health, Financial Support for Scientific Research ‘‘5 per mille 2010’’. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: manuela.salerno@ior.it

Introduction

Rhabdomyosarcoma (RMS) is the most frequent solid tumor in

childhood, histologically featuring different patterns of striated

muscle differentiation and characterized by a very aggressive

clinical behaviour [1]. Although the outcome of RMS patients has

significantly improved over the past two decades based on the use

of surgery and/or radiation therapy in combination with

chemotherapy, relapses still occur in 30–40% of nonmetastatic

patients. Moreover, about 15% of children with RMS show

evidence of systemic disease at the time of diagnosis. These ‘‘high

risk’’ subjects have limited treatment options and a poor prognosis

[2], hence the urgent need to identify novel therapies based on a

thorough knowledge of RMS biology.

An increasing body of evidence suggests that the inadequacy of

current anticancer treatments to eradicate minimal residual

disease and prevent relapse partly depends on their inability to

target the subset of quiescent or low-proliferating tumor cells,

known as cancer stem cells (CSC) [3]. CSC were first identified in

leukemias [4] and subsequently described in several solid tumors

[5], [6], [7], including sarcomas [8], [9], [10], [11], [12]. It is

generally accepted that CSC efficiently initiate tumors, display

stem-like features, and are responsible for local and systemic

relapse due to unresponsiveness to anticancer agents [3]. A

relationship between CSC and minimal residual disease has been

reported [13], strongly suggesting that targeting these cells would

hold a substantial potential to improve the outcome of patients

treated with conventional anticancer agents. Indeed, CSC-like

chemoresistant elements have already been identified also in RMS

[14], [15].

Microenvironmental conditions are able to significantly mod-

ulate the stemness phenotype under physiological conditions as

well as in cancer. Especially in the CSC niche, tumor cells respond

to hypoxia by converting from aerobic respiration to glycolysis,

which in turn produces lactic acid and causes local acidosis. The

presence of such peculiar microenvironmental features has been
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related to the induction and maintenance of multipotency and

stemness [16]. Extracellular acidosis is therefore a major player in

the formation and maintenance of CSC, because, per se, is able to

promote a stem-like phenotype. It is already known that malignant

tumors, including sarcomas, are characterized by an acidic

extracellular environment and that cancer cells usually contain a

significant amount of acidic lysosomes. These features are in

keeping with several features of malignancy, including invasiveness

and resistance to anticancer therapies [17]. In fact, accumulation

of basic drugs into acidic vesicles, or their neutralization through

acidification of the extracellular environment is an effective

mechanism of chemoresistance and may facilitate tumor invasion

[18], [19]. For this reason, the CSC behaviour is influenced by

biochemical and biophysical variables of the extracellular com-

partment.

In this study, we explored the role of lysosome acidification,

sustained by the vacuolar (H+)-ATPase (V-ATPase) proton pump

as a peculiar mechanism conferring a selective advantage to RMS

CSC. We showed that V-ATPase is involved in invasiveness as

well as in chemosensitivity of these cells, and that such features of

malignancy may be completely reversed by blockage of the

acidification process by therapeutic doses of proton pump

inhibitors (PPI), suggesting the potential advantage of this class

of drugs in combination with conventional anticancer agents to

effectively target RMS CSC.

Materials and Methods

Cell lines
RD (RMS), MG-63 (osteosarcoma), SK-ES-1, A-673 (Ewing’s

sarcoma, ES), SH-SY5Y, NB-100, and CHP-212 (neuroblastoma,

NB) cell lines were purchased from the American Type Culture

Collection (ATCC) and cultured in IMDM (Life Technologies),

plus 20 U/mL penicillin, 100 mg/mL streptomycin, and 10%

heat-inactivated fetal bovine serum (FBS) (complete medium).

Multidrug resistant MG-63 cells were isolated by stepwise

exposure to increasing doses of doxorubicin (DXR). The resultant

MG-63 cell line that grew exponentially in the presence of

100 ng/mL of DXR was designated as the multidrug resistant

variant MG-63-DXR100. MG-63-DXR100 were continuously

exposed to 100 ng/mL of DXR to maintain the multidrug

resistant phenotype [20].

Sphere cultures
Sphere-forming cells were obtained as previously described

[12]. Briefly, all cells were cultured in anchorage-independent

conditions in DMEM:F12 medium with progesterone (20 nM),

putresceine (10 mg/mL), sodium selenite (30 nM), apo-transferrin

(100 mg/mL), and insulin (25 mg/mL) (Sigma-Aldrich) in low-

attachment flasks (Nunc). Fresh human epidermal growth factor

(20 ng/mL) and basic fibroblast growth factor (10 ng/mL)

(PeproTech) were added twice a week until cells started to grow

forming floating aggregates, named rhabdospheres. Cultures were

expanded by mechanical dissociation of the spheres, followed by

re-plating of cells and residual cell aggregates in complete medium.

Only cultures able to growth under spherogenic colonies and

displaying stem cell-related features were considered. The spheres

were analysed under serum starved medium on low attachment

substrates (non adherent condition) or adherent condition in the

presence of serum, depending on the assay. All the isolated spheres

were characterised for the expression of stem cell-related markers

(NANOG and OCT3/4) and, only for RMS CSC, for the sphere

forming efficiency and multipotency.

Characterization of stem cell properties of
rhabdospheres

The sphere-forming efficiency during serial passages was

investigated by plating single cells from rhabdospheres at a density

of 2,000 cells/mL in a 48-well plate to obtain new spheres. The

total number of tumor spheres was counted, and the spheres

dissociated to obtain the second and third generation of spheres.

To evaluate multipotency, rhabdospheres were maintained as

adherent cultures for 3 days and then seeded in different

conditions. Briefly, for osteogenic differentiation, 100,000 cells

were seeded in 6-well plates and grown in a-MEM supplemented

with 10% FBS, 10 mM b-glycerophosphate, 1028 M dexameth-

asone, and 50 mg/mL L-ascorbic acid 2-phosphate (Sigma). After

14 days, cells were fixed with 3.7% paraformaldehyde, and

mineralization was evaluated by staining with 1% Alizarin Red S

(pH 4.2; Sigma-Aldrich). For adipogenic differentiation, 100,000

cells were seeded in a 6-well plate and grown in DMEM high

glucose (Lonza) supplemented with 10% FBS, 0.5 mM dexameth-

asone, 0.5 mM 3-isobutyl-1-methylxanthine, and 50 mM indo-

methacine (Sigma-Aldrich). After 17 days, cells were fixed and

lipids stained with 0.3% Oil-Red-O. For chondrogenic differen-

tiation, 500,000 cells were centrifuged in a 15 mL polypropylene

conical tube and incubated in DMEM high glucose supplemented

with 10% FBS, 10 mg/mL TGFb1 (PeproTech), 100 mM L-

ascorbic acid 2-phosphate, 6.25 mg/mL insulin, 40 mg/mL L-

Proline (Sigma-Aldrich). After 3 weeks, sections derived from

chondrogenic pellets were stained with Alcian Blue (pH 2.5).

Gene expression
Gene expression was assessed to determine stem cell-related

features and further characterize the sphere cultures. Total RNA

was isolated from RMS, ES, and NB floating spheres or native

cells with the NucleoSpin RNA II (Macherey-Nagel), and reverse

transcribed. The expression of mRNA for OCT3/4

(NM_002701.4), NANOG (NM_024865.2), MDR1

(AF016535.1), ATPase V0c (NM_001101.2), matrix metallopro-

teinase (MMP) 9 (NM_004994.2), and CXC chemokine receptor-

4 (CXCR4) (NM_001008540.1) was evaluated using a Light

Cycler instrument (Roche Diagnostics), amplifying 1 mg of cDNA,

and the Universal Probe Library (Roche Applied Science). Probes

and primers were selected using web-based assay design software

(ProbeFinder https://www.roche-applied-science.com): OCT3/4-

f 59-CTTCGCAAGCCCTCATTTC-39-; OCT3/4-r 59-GA-

GAAGGCGAAATCCGAAG-39; NANOG-f 59-ATGCCTCA-

CACGGAGACTGT-39; NANOG-r 59-AGGGCTGTCCTGAA-

TAAGCA-39; MDR1-f 59-GCCATCAGTCCTGTTCTTGG-39;

MDR1-r 59-GCTTTTGCATACGCTAAGAGTTC-39; ATPase

V0c-f 59-TTCGTTTTTCGCCGTCAT-39; ATPaseV0c-r 59-

CCACTGGGATGATGGACTTC-39; MMP9-f 59-GAAC-

CAATCTCACCGACAGG-39; MMP9-r 59-GCCACCC-

GAGTGTAACCATA-39. The results were expressed as ratio

between gene of interest and Tata Binding Protein (TBP,

NM_003194.4; TBP-f 59-TTGGGTTTTCCAGCTAAGTTCT-

39; TBP-r 59-CCAGGAAATAACTCTGGCTCA-39) as reference

gene according to the 22DDCT method [21].

Western Blotting
Western blotting was carried out to detect the stem cell-related

markers OCT3/4 and NANOG as well as MDR1, ATPase V0a1

subunit, and TBP. Floating sphere or native cells were lysated with

hot lysis buffer (1% SDS, Tris pH 7.4 20 mM, 5% b-

mercaptoethanol) for the analysis of OCT3/4 and NANOG, or

with RIPA buffer (Tris pH 7.6 50 mM, NaCl 150 mM, Triton-X
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100 5%, sodium deoxycholate 0.25%, EGTA pH 8 1 mM, NaF

1 mM, Sigma) supplemented with protease inhibitors (Roche), for

the other proteins. Equal amounts of protein lysates were

subjected to reducing SDS-PAGE on a polyacrylamide gel,

followed by to immunoblotting analysis. Blots were probed with

a sheep anti-OCT3/4 (Abcam), a mouse anti-NANOG (Abcam), a

mouse anti-MDR1 (D-11, Santa Cruz), a rabbit anti-ATPase V0a1

(Abcam), or a rabbit anti-TBP (Santa Cruz) as reference.

Incubation with horseradish peroxidase-conjugated secondary

antibodies followed. The reaction was revealed by a chemilumi-

nescence substrate (Pierce ECL Plus Western Blotting Substrate,

Thermo Scientific). Immunoblot assays were repeated three times.

The signal from each band was quantified by a dedicated software

for densitometric evaluation (VisionWorksLS Analysis Software,

Biospectrum, UVP).

Immunofluorescence
For the staining of V-ATPase, rhabdospheres were allowed to

adhere for 24 h in complete medium and fixed, then incubated

with an anti-V-ATPase V0a1 polyclonal antibody (Sigma-Aldrich),

followed by a secondary anti-rabbit antibody Alexa green 488 nm

(Life Technologies). To observe vesicular localization of V-

ATPase, actin cytoskeleton was co-stained using 0.5 mg/mL

Phalloidin–Tetramethylrhodamine B isothiocyanate (TRITC)

fluorescent dye (Sigma). Nuclei were counterstained with Hoechst

33258 (Sigma), and cells were observed by confocal microscopy

(Nikon TI-E).

Migration assay
The migration ability of rhabdospheres was evaluated by the

Boyden chamber technique in comparison to RD. Briefly, single

cells derived from RD or rhabdospheres after trypsinization were

suspended in serum free medium containing 0.1% bovine serum

albumin (BSA) and seeded in the upper compartment of a Boyden

chamber (8-mm pore, Euroclone). The lower chambers contained

10% FBS in IMDM medium as a chemo-attractant. Cells were

incubated at 37uC and allowed to migrate for 8 h. Cells attached

to the upper surface of the filter were mechanically removed by

scrubbing with cotton swabs. Chambers were stained in 0.5%

crystal violet diluted in 100% methanol for 30 min, rinsed in water

and examined under bright-field microscopy. Values for migration

were obtained by counting 5 fields per membrane (X20 objective)

and represent the average of four independent experiments.

Invasion assay
MMP activity was quantified as previously described [22].

Briefly, cells from rhabdospheres and RD were seeded in 6-well

plates (300,000 cells/well) and allowed to adhere. After 48 h, cells

were washed and incubated at 37uC with 400 mL of phosphate

buffered saline (PBS) for 3 h. PBS was then collected, centrifuged

and the supernatant was used for the assay. Equal amounts of the

supernatant were added to 100 mL of gelatin quenching (DQ

Gelatin, Life Technologies) in a 96-well plate. Adherent cells were

detached and counted. After 24 h at 37uC, the fluorescence

emission was measured by a microplate reader (Tecan). Results

were reported as the percentage of fluorescence emission with

respect to acellular supernatant and normalized with the total

number of cells. The experiment was repeated three times.

Flow cytometry
Rhabdosphere cells and RD were dissociated by trypsin,

counted and stained as follows. For the quantification of CD133

expression, cell suspensions were incubated with monoclonal

CD133/1 antibody (AC133, Miltenyi Biotec) for 10 min, followed

by 20 min incubation with anti-goat antibody Alexa green 488 nm

(Life Technologies) at 4uC. For the evaluation of CXCR4 content,

cell suspensions were stained with monoclonal CD184 (CXCR4)-

PE (Miltenyi Biotec) for 10 min at 4uC. After staining, cells were

then resuspended in PBS and analysed by a Coulter EPICS XL

Flow Cytometer (Coulter Corporation, Beckman Coulter). Exper-

iments were repeated three times.

Drug sensitivity assay
Rhabdosphere cells and RD were plated in 6-well plates

(200,000/well) and allowed to adhere. After 24 h, cells were

incubated with DXR (10, 50, and 100 ng/mL; Sigma) or cisplatin

(5, 10, and 100 mM; Sigma), and after additional 72 h the number

of viable cells was evaluated by Trypan blue dye exclusion assay.

The percentage of growth inhibition was calculated in respect to

untreated cells. The drug half maximal effective concentration

(EC50) for each cell line was calculated by the linear regression

method. The experiment was repeated twice.

DXR uptake
Rhabdosphere cells and RD were seeded into 8-well glass

chamberslides and allowed to adhere. The cells were then exposed

to DXR (10 mg/mL) for 15 min, washed, and directly observed by

confocal microscopy. The level of nuclear DXR was quantified in

at least 100 cells over different fields using the NIS-Elements

Microscope Imaging Software (Nikon).

Lysosome acidity evaluation
The emission spectrum of the pH-sensitive acridine orange (AO)

was used to measure pH variations in acidic organelles [23], [24].

Rhabdosphere cells and RD were seeded into 6-well plates and

allowed to adhere for 24 h in complete medium. The cells were

then exposed to AO (1 mg/mL) for 10 min, washed, and directly

observed by spectral confocal microscopy. To characterize the

profile of AO emission spectra, the red band contribution (R%)

within the whole emission spectrum was calculated as follows:

R% = 100I655/(I655/I530) where I655 and I530 are the green (520–

540 nm) and the red (645–665 nm) integrated emission intensities,

respectively. The average R% was calculated for all the acidic

organelles in 10 cells. The experiment was repeated twice.

Cytosolic pH measurement
Cytosolic pH (pHc) of rhabdosphere cells and RD was

measured by using carboxy-seminaphthorhodafluor-1 (carboxy-

SNARF-1) (Molecular Probes). Cells were seeded into chamber

slides and allowed to adhere for 24 h, and then 10 mM of carboxy-

SNARF-1 were added to the culture medium for 30 min. The

chamber slides were placed on the stage of the confocal

microscope and allowed to adapt for at least 20 min before

starting pHc measurements. The excitation laser beam of 514 nm

(Arlaser) was directed to the sample via S Plan Fluor EL WD 40X

lens (Nikon). The resulting fluorescence emission was collected at

644 nm and 594 nm. Several regions of interest (ROI) with a

diameter of 1 mm were then randomly selected excluding nuclear

regions. The emission ratio was calibrated using solutions

(110 mM KCl, 25 mM KHCO3, 11 mM glucose, 1 mM MgCl2,

1 mM CaCl2, 10 mM HEPES) with varying pH levels and

containing 10 mM nigericin (K+/H+ ionophore). The fluorescence

emission ratio (644 nm/594 nm) was calculated and used to

estimate pHc from the calibration curve. The experiment was

repeated three times.
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Growth assays after lysosome targeting
To impair lysosome function, rhabdosphere cells and RD were

treated using two different strategies. For the first one, cells were

seeded in 6-well plates (200,000/well), allowed to adhere for 24 h

in complete medium, and then treated with AO (0.1, 0.5, and

1 mg/mL; Sigma) that selectively accumulates into acidic lyso-

somes and affect cancer cell growth [25]. After 72 h, the number

of viable cells was evaluated by dye exclusion assay. The

experiment was repeated two times. The other strategy was

assessed using the PPI omeprazole (OME), a drug that is known to

inhibit V-ATPase activity [26]. Cell viability after OME treatment

was determined using two different assays. a) For the indirect

assay, rhabdospheres and RD, or cells representative of ES or NB

histotype, were seeded in 96-well plates (8,000 cells/well) and

allowed to adhere. After 24 h, the medium was changed with

unbuffered RPMI with 10% FBS and treated with 10, 25, 50, and

100 mM of OME (Sigma-Aldrich). After 24, only for rhabdomyo-

sarcoma cells, and 72 h for RMS, ES and NB cells, the viability

was evaluated by an acid phosphatase (AP) assay. Briefly, the cells

were washed and incubated at 37uC with 100 mL of buffer

containing 0.1 M sodium acetate (pH 5.0), 0.1% Triton X-100,

and 5 mM p-nitrophenil phosphate. After 3 h, the reaction was

stopped with the addition of 10 mL of 1 N NaOH, and colour

development was assayed at 405 nm using a microplate reader

(Tecan) [23]. b) For the direct assay, rhabdospheres and RD were

seeded in 6-well plates and allowed to adhere. After 24 h, 50 mM

OME was added to the culture medium. After additional 24 h, the

number of viable cells was determined by dye exclusion assay. The

experiment was repeated twice.

Apoptosis analysis
Rhabdosphere cells were allowed to adhere after 24 h in

complete medium and exposed to 50 mM of OME in unbuffered

RPMI with 10% FBS. After 24 and 48 h, cells were labelled with

Hoechst 33258 and the presence of apoptotic bodies was detected

under fluorescence microscopy.

Cell cycle analysis
Rhabdospheres were exposed to 100 mM of OME in non

adherent conditions at pH 6.8 for 24 h. The DNA content and

bromodeoxyuridine (BrdU) incorporation during the S-phase were

determined by simultaneous analysis of propidium iodide (PI) for

the total DNA content and of FITC-conjugated anti-BrdU

fluorescence. Briefly, cells were incubated with 40 mM 5-BrdU

(Sigma) for 60 min at 37uC, washed and then 56106 single cells

were fixed with 75% ethanol for 20 min at 4uC. Partial DNA

denaturation was performed by incubating cells in HCl, followed

by neutralization with Na tetraborate. Samples were then

incubated with a mouse monoclonal anti-BrdU FITC antibody

(BD Biosciences), washed, stained with 2.5 mg/mL PI (Sigma-

Aldrich), and analysed. Monoparametric and biparametric anal-

yses were performed using the WinMDI 2.7 software. The

experiment was repeated twice.

Effects of DXR on cell viability after OME treatment
Rhabdosphere cells let to adhere for 24 h in complete medium.

The cells were then pre-treated with 10, 25, 50, and 100 mM of

OME in unbuffered RPMI with 10% FBS. After additional 24 h,

the cells were exposed to 50 and 25 ng/mL of DXR in buffered

medium. After additional 48 h, cell viability was assessed by the

AP assay, as previously described. Data were reported as cell

survival in respect to untreated cells (set = 100%). The experiment

was performed in quadruplicate.

DXR uptake after OME treatment
Rhabdosphere cells let to adhere for 24 h in complete medium.

The cells were then pre-treated with 10 and 20 mM of OME in

unbuffered RPMI with 0.1% FBS for 1 h, and then exposed to

5 mg/mL of DXR for 15 min. The level of nuclear DXR was

quantified in at least 100 cells over different fields, as previously

described, and compared to that of untreated cells. The

experiment was repeated twice.

siRNA transfection
Specific gene silencing effect was obtained by siRNA technology

associated with pipette-type electroporation. Briefly, rhabdosphere

cells were trypsinized and 100 mL of cell suspension containing

2,000,000 cells and 1,6 nmol of specific siRNA (ON-TARGET-

plus Human ATP6V0C siRNA Smart pool, Dharmacon, Thermo

Scientific) or control siRNA (siRNA ctr, ON-TARGETplus Non-

targeting Control Pool, Dharmacon), or water (no siRNA) were

transferred into a 1-mm cuvette (Neon Transfection System, Life

Technologies). Electroporated cells were seeded in 6-well plates

(500,000 cells/well) for RNA isolation and in a 96-well plate for

the growth assay (15,000 cells/well). After 24 h, the reduction of

mRNA level for the V0c ATPase was verified by Real Time PCR,

as previously described. For the growth assay, the cells were

exposed to 25 ng/mL of DXR in buffered medium and incubated

for additional 48 h. Cell viability was assessed by the AP indirect

assay, as previously described. The results were reported as

percentage of cell survival vs control cells (no siRNA). The

experiment was repeated twice.

Inhibition of rhabdosphere cell migration by OME
Rhabdospheres were dissociated and seeded in 6-well plates let

to adhere for 24 h in complete medium. To evaluate the migration

ability, the cells were then pre-treated with 50 mM of OME in

unbuffered RPMI with 10% FBS. After 24 h, viable cells were

counted and then an equal number of untreated or OME-treated

cells were seeded into the upper compartment of the Boyden

chamber, as previously described. The experiment was repeated

twice.

Inhibition of rhabdosphere cell invasive potential by OME
To evaluate the invasive potential, rhabdosphere cells were let

to adhere for 24 h in complete medium and then pre-treated with

50 mM of OME in unbuffered RPMI with 0.1% FBS for 3 h. The

release of MMPs in the supernatant was quantified by gelatin

quenching assay, as previously described, and normalised with the

total number of viable cells. To evaluate the effect on the CXCR4-

expressing population, rhabdospheres were seeded in sphere-

forming condition at pH 6.8 and pre-treated with 100 mM of

OME. After 48 h, the cells were subjected to viable counting and

the CXCR4-positive fraction in the population of living cells

(selected by the forward and side scattering parameters) was

evaluated by flow cytometry, as previously described. The

experiments were repeated twice.

Statistical analysis
Due to the small number of observations, data were considered

as not normally distributed. Values were expressed as means 6

SE. Statistical analysis was performed with the StatView 5.0.1

software (SAS Institute Inc., Cary, NC). The nonparametric

Mann-Whitney U test was used and p,0.05 was considered

significant.
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Results

Rhabdosphere formation and enrichment
After 2–3 weeks of culture in growth factor-enriched serum-

starved medium, RD cells formed cultures consisting in floating

cell aggregates, the so-called rhabdospheres, that could be further

expanded in vitro (Figure 1A). To assess the ability of rhabdo-

sphere cells to initiate self-renewal, the number of spheres formed

over three serial passages at each passage was determined. The

number of spheres obtained at the third generation was

significantly higher, indicating that rhabdospheres can be serially

enriched (Figure 1B; p = 0.0495 vs passage 1).

Stemness features of rhabdospheres
To assess the stem cell-related characteristics of rhabdospheres,

the level of expression of two stemness markers, the transcription

factors OCT3/4 and NANOG, was evaluated and compared to

native RD cells. The transcription of both genes was upregulated

in rhabdospheres (Figure 1C). In particular, we observed a

significant increase for NANOG mRNA and a trend of increase,

although not significant, for OCT3/4 (Figure 1C; p = 0.0283).

Similar results were obtained for NANOG protein by Western

Blot analysis, by which we detected a weak but significant increase

for spheres (Figure 1D; p = 0.0495), whereas we did not find

difference for OCT3/4. Notably, we also found that CD133 was

not associated with the stem-like phenotype (45.963.4% for RMS

CSC vs 43.861.8% for RD, respectively). Finally, we showed the

stem cell plasticity of rhabdospheres by their ability to differentiate

along three mesenchymal lineages, as demonstrated by Alizarin

Red S (osteogenesis), Oil-Red-O (adipogenesis), and Alcian Blue

(chondrogenesis) staining (Figure 1E).

Enhanced migration and invasion properties of
rhabdospheres

The number of rhabdosphere cells that migrated through the

Boyden Chamber was significantly higher than RD (Figure 1F;

p = 0.0162). Rhabdosphere cells also showed a marked in vitro
extracellular matrix degradation potential compared to native RD,

as shown by the upregulation of MMP9 mRNA (Figure 1G;

p = 0.0495), and by the higher levels of gelatin degradation activity

of secreted MMP9 (Figure 1H; p = 0.0368). In addition, rhabdo-

spheres expressed very high levels of the cell surface receptor

CXCR4, as demonstrated by Real Time PCR (Figure 1I;

p = 0.0495) and flow cytometry (Figure 1L; p = 0.0027). This

chemokine receptor mediates the migration of tumor cells towards

its ligand expressing tissues [27].

Reduced sensitivity to DXR through MDR1-independent
mechanism in rhabdospheres

To evaluate chemoresistance in RMS CSC, rhabdospheres and

native RD were exposed to increasing concentrations of cisplatin

or DXR. In terms of viability inhibition, both cell populations

showed the same pattern in response to cisplatin (Figure 2A, EC50

values: 18.7 mM for spheres and 14.6 mM for RD). On the other

hand, unlike native RD, RMS CSC showed a significant lower

growth inhibition in response to DXR (Figure 2B; p = 0.018 for

10 ng/mL, p = 0.0209 for 50 ng/mL, and p = 0.0202 for 100 ng/

mL). EC50 value was 4.5-fold higher for rhabdospheres than for

RD (79.5 ng/mL and 17.6 ng/mL, respectively). The intensity of

the fluorescence signal of DXR in the nuclei was then evaluated to

deeper investigate the chemoresistance features of rhabdospheres

[28]. Although we still found nuclear localization of DXR in CSC

(Figure 2C, left) that is usually associated with sensitive cells, the

intensity of nuclear signal was significantly lower in rhabdospheres

compared to native RD (Figure 2C, right; p = 0.0013). To

investigate if this reduced nuclear concentration was due to a

multidrug resistance mechanism, we analysed the expression of

MDR1. We used DXR-resistant MG-63-DXR100 cells as a

positive control. MDR1 mRNA (Figure 2D; p = 0.0339 MG-63-

DXR100 vs RD and p = 0.0253 MG-63-DXR100 vs spheres) and

P-glycoprotein (Figure 2E) were both undetectable in rhabdo-

spheres and native RD cells, suggesting the existence of a different

mechanism for the reduced sensitivity to DXR in these cells.

Lysosomal pH in rhabdospheres
To determine lysosome pH, rhabdospheres and native RD cells

were exposed to AO, a fluorescent dye that selectively accumulates

into acidic vesicles in a pH-dependent manner. As shown by

representative pictures (Figure 3A, left) and by the emission

spectra profile of lysosomal AO (green and red emission intensities

at 520–540 nm and 645–665 nm, respectively) (Figure 3A, right),

AO uptake was different in RD and rhabdospheres. Quantitative

analysis revealed that rhabdospheres had a higher number of

acidic vesicles (Figure 3B, top) and a highly significant lower

vesicular pH compared to native RD cells (Figure 3B, bottom; p,

0.0001). On the contrary, a higher level of cytosolic alkalinization

was detected in rhabdospheres (Figure 3C; p = 0.0495). This was

possibly as a consequence of increased proton storage within the

lysosomal compartment. Since V-ATPase is a key effector of

vesicle acidification, we next assessed the level of the V0c subunit

that was higher both at the mRNA (nearly 1.8-fold higher,

Figure 3D; p = 0.0283) and at the protein level (Figure 3E;

p = 0.0495) than in native RD. In rhabdospheres, V-ATPase was

predominantly localized in the perinuclear zone, close to the

nuclei, possibly within the endoplasmic reticulum (Figure 3F, left),

and only little localization was observed on the plasma membrane

(Figure 3F, right; arrows).

Effect of lysosomal or V-ATPase targeting on
rhabdosphere survival

On the contrary to what obtained with DXR that was more

cytotoxic for RD cells (Figure 2B), either AO (Figure 4A) or OME

treatments (Figure 4B; p= 0.0139 vs untreated condition) were

effective in both the cell populations to inhibit the cell growth and

viability, respectively. Notably, OME inhibition was even stronger

in the CSC fraction. Indeed, treatment with OME affected

rhabdosphere viability already at low concentrations (Figure 4B;

p = 0.0202 for 25 mM at 24 h; p = 0.0209 for other conditions vs
RD). To ascertain if the effect of OME on cell viability was a

consequence of growth inhibition, or of an induction of apoptosis,

we performed cell counting, cell cycle and apoptosis analyses. The

number of cells was significantly decreased already after 24 h of

treatment with 50 mM (Figure 4C; p = 0.0283). Adversely, after

48 h of treatment with OME 100 mM, the nuclear staining with

Hoechst 33258 did not reveal evidence of apoptotic bodies

(Figure 4D). On the other hand, treatment with OME 100 mM

induced a significantly increased in the number of cells in G0–G1

phase, with a corresponding decrease in the S phase (Figure 4E;

p = 0.0163).

V-ATPase in CSC from other tumor histotypes
To evaluate if the increased expression of V-ATPase is a general

phenomenon that can be associated with CSC of other tumor

histotypes, we successfully isolated spheres from ES (A-673 and

SK-ES-1) and NB (NB-100 and CHP-212) cell lines, whereas SH-

SY5Y spheres failed to growth. Although no difference was
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Figure 1. Stem cell-related properties, migration, and invasion ability of rhabdospheres. (A) Phase contrast pictures of rhabdospheres
derived from RD grown in anchorage-independent condition, in serum-starved medium supplemented with bFGF and EGF. Representative image,
scale bar 100 mm. (B) Sphere-forming efficiency of rhabdospheres over three serial passages. The graph shows the amount of the primary, secondary
(generated from dissociated primary spheres), and tertiary (generated from dissociated secondary spheres) spheres from 2000 cells. *p,0.05 vs
primary spheres. (C) mRNA levels for the stem cell markers OCT3/4 and NANOG in rhabdospheres compared to native RD by Real Time PCR. *p,0.05.
(D) Western blotting for OCT3/4 and NANOG in rhabdospheres compared to RD native cells (left, representative images) and densitometric analysis
(right; *p,0.05). (E) Differentiation assays of rhabdospheres after incubation with appropriate differentiating stimuli. Left: osteogenic differentiation
evaluated by Alizarin Red S staining, scale bar 100 mm; middle: adipogenic differentiation evaluated by Oil-Red-O lipid staining, scale bar 10 mm; right:
chondrogenic differentiation evaluated by Alcian Blue staining, scale bar 50 mm. Representative images. (F) Transwell chemotaxis assay of
rhabdospheres vs native RD. The graph shows the number of migrated cells in five X20 fields after 8 h. *p,0.05. (G) mRNA levels for MMP9 in
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rhabdospheres vs native RD by Real Time PCR. *p,0.05. (H) MMPs activity in the supernatant of rhabdospheres vs RD native cells by gelatin
quenching assay. *p,0.05. (I) mRNA levels for CXCR4 in rhabdospheres compared to native RD by Real Time PCR. *p,0.05. (L) Cytofluorimetric
analysis of CXCR4-positive cell fraction in rhabdospheres and native RD. Representative intensity plots for rhabdospheres and native RD (left) and
percentage of CXCR4-positive cells (right). **p,0.001.
doi:10.1371/journal.pone.0110340.g001

Figure 2. Analysis of chemoresistance of rhabdospheres. (A) Percentage of cell viability inhibition of rhabdospheres compared to native RD
after treatment with different doses of cisplatin, calculated vs untreated cells (B) Percentage of cell growth inhibition of rhabdospheres compared to
native RD after treatment with different doses of DXR, calculated vs untreated cells *p,0.05. (C) DXR nuclear uptake by confocal microscopy (left,
representative images, scale bar 50 mm) and quantification of the intensity level of nuclear signal by image analysis (right; *p,0.05). (D) mRNA levels
for MDR1 by Real Time PCR (*p,0.05) and (E) Western blotting for MDR1 protein expression (representative image). Rhabdospheres vs native RD,
MG63-DXR100 multidrug resistant cells as positive control. (F) ATP intracellular content evaluated in rhabdospheres in comparison to native RD cells.
doi:10.1371/journal.pone.0110340.g002
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Figure 3. Increased lysosome acidity and V-ATPase expression in rhabdospheres. (A) AO uptake in rhabdospheres vs native RD by
confocal microscopy. Red staining is associated with acidic vesicles, whereas green staining is associated with high pH. Representative images of AO
staining (left; scale bar 50 mm) and emission spectra graphs (right) of lysosomes within the cells indicated in the left panel by the white arrows. X-axis,
wavelength (l); Y-axis, intensity index (max= 1). (B) Total number of lysosomes (top) and quantification of the red band contribution (R%) (bottom;
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observed for the stemness marker OCT3/4, the mRNA level of

NANOG was significantly increased in ES spheres compared to

native cells (Figure 5A, left; p = 0,0065 for A-673 and p = 0.05 for

SK-ES-1). In NB, mRNA for both OCT3/4 and NANOG was

significantly higher in spheres than in native cells (Figure 5A, right;

p = 0.0495). The result obtained in ES cultures was also confirmed

by western blotting only for NANOG, that appeared to be weak

but significantly increased in the sphere fraction (Figure 5B;

p = 0.0495). Unexpectedly, in contrast to the results obtained for

RMS, the mRNA level for the V0c ATPase was significantly

reduced in spheres compared to native cells in all models but NB-

100 (Figure 5C; p = 0.0209 for ES and p = 0.0495 for NB).

Accordingly, the treatment with OME was not able to inhibit the

growth of ES cells (Figure 5D; p = 0.0209).

Effect of V-ATPase targeting on cancer invasiveness and
sensitivity to chemotherapy drugs

Rhabdospheres were pre-treated with 10 to 100 mM of OME

for 24 h, and then exposed to low doses of DXR or of cisplatin for

additional 48 h. We observed that the addition of OME to

cisplatin treatment was only mildly effective when compared to

cells treated with cisplatin alone (Figure 6A, left). On the contrary,

only pre-treatment with 100 mM of OME significantly enhanced

the toxicity of both the doses tested of DXR (Figure 6A, right;

p = 0.0209). Moreover, after 1 h of pre-treatment with different

concentrations of OME followed by direct observation at confocal

microscope, we found a significant increase of nuclear localization

of DXR, as revealed by the presence of bright peaks in the surface

intensity plots (Figure 6B, top), and by image analysis quantifica-

tion (Figure 6B, bottom; p = 0.016 for 10 mM and p,0.0001 for

20 mM). This result suggests that inhibition of V-ATPase induces

an increase of intracellular DXR, in turn, leading to an increase of

its nuclear concentration and cytotoxicity. The involvement of V-

ATPase in the sensitivity of rhabdosphere to DXR was confirmed

by the use of siRNA transcriptional gene silencing of V0c

(Figure 6C; p = 0.0495 vs no siRNA) that, like OME, significantly

increased DXR cytotoxicity (Figure 6D; p = 0.0209 vs no siRNA).

The extent of the inhibition was lower in respect to the treatment

with OME because, for this assay, we could not use acidic

conditions. In fact, electroporation increases the cell membrane

permeability to the extracellular excess of protons, ultimately

leading to a strong unspecific cytotoxic effect. Nevertheless, the

role of V-ATPase in CSC is mainly important under acidic

conditions.

The in vitro migration and invasive potential of rhabdospheres

after exposure to OME was also investigated. The treatment of

24 h with OME significantly reduced the number of migrated cells

(Figure 7A; p = 0.0247), and the invasive potential of rhabdo-

spheres, evaluated in terms of MMPs secretion (Figure 7B;

p = 0.0494). Furthermore, the treatment with 100 mM of OME

significantly decreased the expression of the chemokine receptor

CXCR4, closely associated with tumor migratory ability (Fig-

ure 7C; p = 0.0209).

Discussion

Approximately one-third of RMS patients without metastases at

presentation and treated with chemotherapy, in combination with

surgery and/or radiation therapy, undergo clinical progression

[2], suggesting the presence of a reservoir of sarcoma cells that do

not respond to anticancer agents. This reservoir might reside in

the quiescent or slowly-proliferating cell subset, known as CSC,

that features self-renewal potency and the ability to give rise to

highly proliferating elements, and that are widely recognised as a

key player in clinical drug resistance and tumor relapse [3]. The

presence of chemoresistant CSC has been already described in

RMS [14], [15]. In order to improve the outcome of high-risk

RMS patients, the mechanisms responsible for a reduced

effectiveness of anticancer agents in RMS CSC are currently a

subject of great investigation.

To obtain RMS CSC-enriched cultures, we used the sphere

system method that is based on the ability of CSC to grow as

spherical colonies under low-adherence conditions (rhabdo-

spheres), a widely accepted feature of CSC in solid tumors [6]

[29]. As a proof of the enrichment in CSC-like cells of

rhabdosphere cultures, we demonstrated in the higher levels of

expression of the stemness-related factors OCT3/4 and NANOG

in rhabdospheres as compared to native cells. Rhabdospheres

could also be serially enriched and differentiated into multiple

mesenchymal lineages, as further index of self-renewal ability and

plasticity typical of stem-like cells. Then, to deeply characterize

RMS CSC, we tested their in vitro invasiveness and migration

potential. We performed a chemotaxis assay and we looked to

MMP9 and CXCR4 expression. MMP9 is a protease is involved

in the breakdown of extracellular matrix and that has been

associated with CSC in solid tumors [30]. CXCR4 is a chemokine

receptor for the stromal-derived factor 1 that plays an important

role in the induction of chemotactic and invasive responses in

several solid tumors [27], including osteosarcoma [31] and RMS

[32], [33]. Rhabdospheres showed higher MMP9 expression and

activity, higher migration ability, and increased CXCR4-positive

cell fraction in comparison to native cells. Our results confirmed a

striking attitude of CSC to invade the surrounding environment.

A pivotal feature of CSC is the resistance to anticancer drugs

[9]. Indeed, the ability to extrude nuclear dyes such as Hoechst

33258 via ABC transporters has been extensively used as a tool to

characterize CSC [14], [34]. For this reason, we tested the

cytotoxic activity of two drugs currently used in RMS treatment,

cisplatin and DXR. Cisplatin was equally effective in RMS CSC

and native cells. Regarding DXR, although we did not observe a

chemoresistant phenotype that is usually associated with the lack

of nuclear localization of DXR, RMS CSC showed a lower

amount of DXR accumulation as well as a significantly lower

in vitro drug sensitivity compared to native cells. The reduced

sensitivity to DXR was not due to an increased expression of P-

glycoprotein, as it might be expected based on the well-established

role of multidrug resistance in human sarcomas [35], [36]. We

therefore hypothesised that the lower sensitivity observed in RMS

CSC compared to native cells was a consequence of an aberrant

vesicle acidification status. In fact, a high acidity of lysosomes can

increase the trapping of weakly basic drugs, like DXR drug, inside

****p,0.0001) after AO staining in rhabdospheres and native RD. (C) Quantitative analysis of pHc through carboxy-SNARF-1. *p,0.05. (D) mRNA
levels for ATPase V0c by Real Time PCR (p,0.05). (E) Western blotting for ATPase V0c (top, representative image) and densitometric analysis (bottom,
*p,0.05). (F) Confocal analysis of rhabdosphere cells after immunofluorescence staining of ATPase V0a1 subunit localization (green) in the vesicular
compartment (cytoskeleton marked by phalloidin-TRITC, middle) or in the cytoplasmic membrane (arrows in the bright field, left). The squared detail
of plasmatic membrane localization is enlarged (right). Nuclei were counterstained with Hoechst 33258. Representative images of an xy field, scale
bar 20 mm.
doi:10.1371/journal.pone.0110340.g003
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Figure 4. Effects of strategies targeting V-ATPase in rhabdospheres. (A) Percentage of cell growth inhibition of rhabdospheres and RD cells
after treatment with AO at different concentrations evaluated by viable cell counting with respect to untreated cells. (B) Percentage of cell viability
inhibition after treatment with OME at different concentrations with respect to untreated cells, evaluated by the acid phosphatase indirect assay (*p,
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0.05 spheres vs RD and #p,0.05 spheres or RD vs untreated). (C) Cell number evaluated by dye exclusion assay after OME treatment. *p,0.05. (D)
Hoechst 33258 staining to evaluate apoptosis of rhabdosphere cells after OME treatment. Representative pictures. Scale bar 50 mm. (E) Cell cycle
distribution of rhabdosphere cells by flow cytometry after OME treatment. Left, representative images of double stained cells indicating the total
content of DNA (Propidium Iodide, X-axis) and Bromodeoxyuridine (BrdU) incorporation into newly synthesized DNA by proliferating cells during S-
phase (BrdU-FITC, Y-axis). Right, graph of the percentages (*p =,0.05).
doi:10.1371/journal.pone.0110340.g004

Figure 5. Analysis of V-ATPase expression and OME effectiveness in other CSC models. (A) Real Time PCR analysis of mRNA levels for the
stem cell markers OCT3/4 and NANOG in spheres obtained from A-673, SK-ES-1 (ES, left; *p,0.05, **p,0.01), NB-100, and CHP-212 (NB, right; *p,
0.05) cell lines in comparison to native cells. *p,0.05. (B) Western blotting for OCT3/4 and NANOG in ES spheres compared to native cells (left,
representative images) and densitometric analysis (right; *p,0.05). (C) mRNA levels for ATPase V0c by Real Time PCR in ES and NB spheres compared
to native cells (*p,0.05). (D) Percentage of inhibition of cell viability after 72 h of treatment of ES spheres with OME, evaluated by the acid
phosphatase indirect assay with respect to untreated cells (*p,0.05).
doi:10.1371/journal.pone.0110340.g005
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Figure 6. Effects of OME on chemoresistance of rhabdospheres. (A) Percentage of growth inhibition of rhabdospheres pre-treated with OME
and incubated with DXR (left; *p,0.05 vs DXR alone-treated cells) or cisplatin (right) with respect to untreated cells, evaluated by the acid
phosphatase indirect assay. (B) Confocal microscope analysis and quantification of DXR uptake in rhabdospheres after OME pre-treatment. Nuclear
DXR fluorescence intensity indicated with colour and height in surface intensity plots (representative images, top), and quantification of nuclear
signal by bar graph (bottom; *p,0.05 for 10 mM and ****p,0.0001 for 20 mM). (C) mRNA analysis for ATPase V0c after rhabdosphere electroporation
with a specific siRNA against the V0c subunit. (D) Cell survival of rhabdospheres electroporated with the specific siRNA against ATPase V0c and treated
with 25 ng/mL of DXR, determined by the acid phosphatase indirect assay (*p,0.05 vs no siRNA).
doi:10.1371/journal.pone.0110340.g006
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the lysosomal compartment, the so called ‘‘ion trapping’’

mechanism, and allows cancer cells to develop chemoresistance

[37], [38]. As a confirmation, lysosomal pH was found to be

significantly lower in RMS CSC, whereas cytosolic pH was higher

as compared to native cells. An aberrant ion pumping mediated by

proton transporters may be responsible not only for an increased

lysosomal acidity, but also for an altered pH gradient across the

plasma membrane that can, in turn, obstacle the DXR intracel-

lular uptake also by an alternative mechanism, the alteration of the

surface pressure and permeability of the cytoplasmic membrane,

like elegantly demonstrated by other authors [39]. Both the

suggested mechanisms would indirectly and ultimately lead to a

decreased concentration of DXR in the nucleus, a phenomenon

that we demonstrated in our model. More acidic lysosomes can be

also responsible for an increase of cancer invasiveness through the

release and activation of MMPs during the invasion process.

Indeed, an increase of lysosomal diameter, together with a

decrease of luminal pH, has already been observed in highly

metastatic breast cancer cell lines [18], and in chemoresistant

neoplastic cells [40]. This study is the first experimental evidence

of the role of vesicular acidification in CSC biology.

To preliminarily investigate if the targeting of lysosomal activity

could be a valuable approach to affect CSC, we treated RMS CSC

with AO. This is a nontoxic cationic dye that strongly accumulates

in acidic compartments, such as lysosomes. AO has been

introduced as a tool for the photodynamic treatment of sarcomas

due to its selective accumulation in tumor environment, and its

antineoplastic activity has been extensively validated in sarcoma

cells [25], [41]. We found that, in contrast to DXR, AO treatment

successfully targets RMS CSC. These findings demonstrated that

lysosomal targeting is a successful strategy to affect CSC in RMS.

To more completely describe this phenomenon in rhabdo-

spheres, we then explored the role of V-ATPase that is the main

protein responsible for the regulation of lysosomal pH [42]. V-

ATPases are large, multi-subunit complexes organized into two

domains, the peripheral domain (V1) that carries out ATP

hydrolysis, and an integral domain (V0) responsible for exchanging

protons. A high expression of this pump has been associated with

chemoresistance and metastatic behaviour, and V-ATPase target-

Figure 7. Effects of OME on invasiveness of rhabdospheres. (A) Transwell chemotaxis assay of rhabdospheres after pre-treatment with OME.
*p,0.05. (B) MMPs activity in the supernatant of rhabdospheres after pre-treatment with OME by gelatin quenching assay. *p,0.05. (C)
Cytofluorimetric analysis of CXCR4-positive cell fraction in rhabdospheres after treatment with OME. Left, representative intensity plots. Right, graph
of the percentages. *p,0.05.
doi:10.1371/journal.pone.0110340.g007
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ing is being introduced as a promising therapeutic tool [18], [43].

We focused on the V0c subunit that has been associated with

chemoresistance [44] and that, specifically in RMS, modulates cell

survival [24]. Looking at the expression of this subunit, we found

that both mRNA and protein are significantly upregulated in

RMS CSC compared to native cells, and that the protein is

particularly expressed at the perinuclear region, where it is able to

protect the nucleus from an excess amount of protons [17]. As a

following step, we looked at more specific therapies targeting the

V-ATPase in the CSC population. Thus, we explored the use of

OME, a PPI that selectively inhibits V-ATPase through the

binding to the V1a subunit [26] and, as we also previously

demonstrated, is able to alkalinize acidic lysosomes and to impair

sarcoma cell survival [22], [24]. Interestingly, administration of

OME was even more effective in RMS CSC than in native cells.

To date, the mechanism of toxicity of not photoactivated AO is

not clear, and therefore we do not know why OME was more

effective than AO in RMS CSC. However, we deeper investigated

on the mechanism on the basis of the inhibitory mechanisms of

OME, and we observed a reduction of S phase and an increase in

G0–G1 in CSC, without evidence of apoptosis, suggesting a

cytostatic rather than cytotoxic effect for this drug. The

involvement of lysosomes in cell growth was not unexpected.

Indeed, these organelles have already been associated to the loss of

control of the cell growth, to a deregulation of cell death, and to

the acquisition of chemoresistance and metastatic potential [45].

Lysosomes are the most important storage compartment for

proteases and other hydrolytic enzymes, and V-ATPase is

primarily involved in the maintenance of cellular homeostasis by

accomplishing the degradation of autologous material. This is of

particular importance for metastatic CSC since, once outstripped

of the blood supply, run into an unfavourable hypoxic context

becoming oxygen-and nutrient-starved [46]. Therefore, starved

CSC are forced to activate catabolic processes useful for the

recycling of intracellular components, as an alternative source of

energy to maintain homeostasis, quiescence and viability during

metabolic stress.

To verify if such promising therapeutic approach can be also

proposed for other paediatric solid cancers, we analysed the level

of expression of V-ATPase in CSC obtained from Ewing’s

sarcoma and neuroblastoma. However, in these CSC cultures,

we did not find higher levels of V-ATPase than in native cells and,

consequently, we did not observe an increased sensitivity to OME,

concluding that the mechanism here proposed and mediated by

V-ATPase is specific for the CSC of RMS histotype.

Figure 8. Targeting lysosomal acidity in rhabdomyosarcoma CSC. Lysosome acidification in RMS CSC is mediated by V-ATPase, and plays an
important role for growth, chemoresistance, and invasiveness of these cells (A). The anti-V-ATPase OME is an effective drug and it can be proposed as
a valuable strategy to affect RMS CSC (B).
doi:10.1371/journal.pone.0110340.g008
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On the light of the concept that lysosomes are involved in RMS

drug resistance, we then evaluated if the treatment with OME

could enhance DXR cytotoxicity in RMS CSC. We found that

pre-treatment with OME did not improve the effect of cisplatin,

but induced an increase in the nuclear accumulation of DXR, in

turn resulting in a significantly higher cytotoxic effect. This

additional result confirms that the less sensitive phenotype to DXR

in RMS CSC is dependent on V-ATPase function.

To further directly correlate the V-ATPase activity with a low

DXR response, we impaired the expression of the proton pump by

a specific silencing approach. Indeed, this strategy resulted in a

strong decrease of V-ATPase mRNA expression and was able to

partially restore the sensitivity of RMS CSC to DXR.

Interestingly, beyond the ability to restore CSC sensitivity to

DXR, OME treatment was also able to impair the high in vitro
invasiveness of RMS CSC in terms of migration ability, MMPs

release, and enrichment of a CXCR4-positive subpopulation. As

mentioned above, lysosome function has been associated to

metastatic spread of breast cancer [18], and a recent hypothesis

has correlated lysosomes to the regulation of the migratory/

invasive phenotype of breast and glioblastoma stem cells as an

essential part of the autophagic flux [47].

Taken together, these data highlight the role of lysosomal pH in

several aspects of RMS CSC biology and provide consistent

evidence that vesicle acidification sustained by V-ATPase can be

considered as a hallmark of RMS CSC, in which it drives

mechanisms of a reduced sensitivity to anticancer drugs and

activities related to invasion and metastasis (Figure 8A). Our

results encourage the exploitation of new and more specific anti-

cancer drugs with an increased toxicity to CSC and reduced

unfavourable side effects through the targeting of the lysosomal

activity (Figure 8B). Photodynamic therapies that take advantage

of low pH of tumor cells [48], the use of PPI as anticancer drugs

[49], and the design of novel nanocarriers based on pH sensitive

lipids or polymers [50] demonstrate that this is a powerful strategy

to be recommended for translation to the CSC subpopulation.
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