151 research outputs found

    The Impact of MicroRNAs on Brain Aging and Neurodegeneration

    Get PDF
    The molecular instructions that govern gene expression regulation are encoded in the genome and ultimately determine the morphology and functional specifications of the human brain. As a consequence, changes in gene expression levels might be directly related to the functional decline associated with brain aging. Small noncoding RNAs, including miRNAs, comprise a group of regulatory molecules that modulate the expression of hundred of genes which play important roles in brain metabolism. Recent comparative studies in humans and nonhuman primates revealed that miRNAs regulate multiple pathways and interconnected signaling cascades that are the basis for the cognitive decline and neurodegenerative disorders during aging. Identifying the roles of miRNAs and their target genes in model organisms combined with system-level studies of the brain would provide more comprehensive understanding of the molecular basis of brain deterioration during the aging process

    Correlated evolution of nucleotide substitution rates and allelic variation in Mhc-DRB lineages of primates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The major histocompatibility complex (MHC) is a key model of genetic polymorphism. Selection pressure by pathogens or other microevolutionary forces may result in a high rate of non-synonymous substitutions at the codons specifying the contact residues of the antigen binding sites (ABS), and the maintenance of extreme MHC allelic variation at the population/species level. Therefore, selection forces favouring MHC variability for any reason should cause a correlated evolution between substitution rates and allelic polymorphism. To investigate this prediction, we characterised nucleotide substitution rates and allelic polymorphism (i.e. the number of alleles detected in relation to the number of animals screened) of several <it>Mhc </it>class II <it>DRB </it>lineages in 46 primate species, and tested for a correlation between them.</p> <p>Results</p> <p>First, we demonstrate that species-specific and lineage-specific evolutionary constraints favour species- and lineage-dependent substitution rate at the codons specifying the ABS contact residues (i.e. certain species and lineages can be characterised by high substitution rate, while others have low rate). Second, we show that although the degree of the non-synonymous substitution rate at the ABS contact residues was systematically higher than the degree of the synonymous substitution rate, these estimates were strongly correlated when we controlled for species-specific and lineage-specific effects, and also for the fact that different studies relied on different sample size. Such relationships between substitution rates of different types could even be extended to the non-contact residues of the molecule. Third, we provide statistical evidence that increased substitution rate along a MHC gene may lead to allelic variation, as a high substitution rate can be observed in those lineages in which many alleles are maintained. Fourth, we show that the detected patterns were independent of phylogenetic constraints. When we used phylogenetic models that control for similarity between species, due to common descent, and focused on variations within a single lineage (<it>DRB1*03</it>), the positive relationship between different substitution rates and allelic polymorphisms was still robust. Finally, we found the same effects to emerge in the analyses that eliminated within-species variation in MHC traits by using strictly single population-level studies. However, in a set of contrasting analyses, in which we focused on the non-functional <it>DRB6 </it>locus, the correlation between substitution rates and allelic variation was not prevalent.</p> <p>Conclusion</p> <p>Our results indicate that positive selection for the generation of allelic polymorphism acting on the functional part of the protein has consequences for the nucleotide substitution rate along the whole exon 2 sequence of the <it>Mhc-DRB </it>gene. Additionally, we proved that an increased substitution rate can promote allelic variation within lineages. Consequently, the evolution of different characteristics of genetic polymorphism is not independent.</p

    Functional Annotation of Small Noncoding RNAs Target Genes Provides Evidence for a Deregulated Ubiquitin-Proteasome Pathway in Spinocerebellar Ataxia Type 1

    Get PDF
    Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disorder caused by the expansion of CAG repeats in the ataxin 1 (ATXN1) gene. In affected cerebellar neurons of patients, mutant ATXN1 accumulates in ubiquitin-positive nuclear inclusions, indicating that protein misfolding is involved in SCA1 pathogenesis. In this study, we functionally annotated the target genes of the small noncoding RNAs (ncRNAs) that were selectively activated in the affected brain compartments. The primary targets of these RNAs, which exhibited a significant enrichment in the cerebellum and cortex of SCA1 patients, were members of the ubiquitin-proteasome system. Thus, we identified and functionally annotated a plausible regulatory pathway that may serve as a potential target to modulate the outcome of neurodegenerative diseases

    The KIR repertoire of a West African chimpanzee population is characterized by limited gene, allele, and haplotype variation

    Get PDF
    IntroductionThe killer cell immunoglobulin-like receptors (KIR) play a pivotal role in modulating the NK cell responses, for instance, through interaction with major histocompatibility complex (MHC) class I molecules. Both gene systems map to different chromosomes but co-evolved during evolution. The human KIR gene family is characterized by abundant allelic polymorphism and copy number variation. In contrast, our knowledge of the KIR repertoire in chimpanzees is limited to 39 reported alleles, with no available population data. Only three genomic KIR region configurations have been mapped, and seventeen additional ones were deduced by genotyping.MethodsPreviously, we documented that the chimpanzee MHC class I repertoire has been skewed due to an ancient selective sweep. To understand the depth of the sweep, we set out to determine the full-length KIR transcriptome – in our MHC characterized pedigreed West African chimpanzee cohort – using SMRT sequencing (PacBio). In addition, the genomic organization of 14 KIR haplotypes was characterized by applying a Cas9-mediated enrichment approach in concert with long-read sequencing by Oxford Nanopore Technologies.ResultsIn the cohort, we discovered 35 undescribed and 15 already recorded Patr-KIR alleles, and a novel hybrid KIR gene. Some KIR transcripts are subject to evolutionary conserved alternative splicing events. A detailed insight on the KIR region dynamics (location and order of genes) was obtained, however, only five new KIR region configurations were detected. The population data allowed to investigate the distribution of the MHC-C1 and C2-epitope specificity of the inhibitory lineage III KIR repertoire, and appears to be skewed towards C2.DiscussionAlthough the KIR region is known to evolve fast, as observed in other primate species, our overall conclusion is that the genomic architecture and repertoire in West African chimpanzees exhibit only limited to moderate levels of variation. Hence, the ancient selective sweep that affected the chimpanzee MHC class I region may also have impacted the KIR system

    Genomic plasticity of the immune-related Mhc class I B region in macaque species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In sharp contrast to humans and great apes, the expanded <it>Mhc</it>-<it>B </it>region of rhesus and cynomolgus macaques is characterized by the presence of differential numbers and unique combinations of polymorphic class I <it>B </it>genes per haplotype. The MIB microsatellite is closely linked to the single class I <it>B </it>gene in human and in some great apes studied. The physical map of the <it>Mhc </it>of a heterozygous rhesus monkey provides unique material to analyze MIB and <it>Mamu</it>-<it>B </it>copy number variation and then allows one to decipher the compound evolutionary history of this region in primate species.</p> <p>Results</p> <p><it>In silico </it>research pinpointed 12 MIB copies (duplicons), most of which are associated with expressed <it>B</it>-genes that cluster in a separate clade in the phylogenetic tree. Generic primers tested on homozygous rhesus and pedigreed cynomolgus macaques allowed the identification of eight to eleven MIB copies per individual. The number of MIB copies present per haplotype varies from a minimum of three to six in cynomolgus macaques and from five to eight copies in rhesus macaques. Phylogenetic analyses highlight a strong transpecific sharing of MIB duplicons. Using the physical map, we observed that, similar to MIB duplicons, highly divergent <it>Mamu</it>-<it>B </it>genes can be present on the same haplotype. Haplotype variation as reflected by the copy number variation of class I <it>B </it>loci is best explained by recombination events, which are found to occur between MIBs and <it>Mamu</it>-<it>B</it>.</p> <p>Conclusion</p> <p>The data suggest the existence of highly divergent MIB and <it>Mamu-B </it>lineages on a given haplotype, as well as variable MIB and <it>B </it>copy numbers and configurations, at least in rhesus macaque. Recombination seems to occur between MIB and <it>Mamu</it>-<it>B </it>loci, and the resulting haplotypic plasticity at the individual level may be a strategy to better cope with pathogens. Therefore, evolutionary inferences based on the multiplicated MIB loci but also other markers close to <it>B</it>-genes appear to be promising for the study of <it>B</it>-region organization and evolution in primates.</p

    IPD-MHC 2.0:An improved inter-species database for the study of the major histocompatibility complex

    Get PDF
    The IPD-MHC Database project (http://www.ebi.ac.uk/ipd/mhc/) collects and expertly curates sequences of the major histocompatibility complex from non-human species and provides the infrastructure and tools to enable accurate analysis. Since the first release of the database in 2003, IPD-MHC has grown and currently hosts a number of specific sections, with more than 7000 alleles from 70 species, including non-human primates, canines, felines, equids, ovids, suids, bovins, salmonids and murids. These sequences are expertly curated and made publicly available through an open access website. The IPD-MHC Database is a key resource in its field, and this has led to an average of 1500 unique visitors and more than 5000 viewed pages per month. As the database has grown in size and complexity, it has created a number of challenges in maintaining and organizing information, particularly the need to standardize nomenclature and taxonomic classification, while incorporating new allele submissions. Here, we describe the latest database release, the IPD-MHC 2.0 and discuss planned developments. This release incorporates sequence updates and new tools that enhance database queries and improve the submission procedure by utilizing common tools that are able to handle the varied requirements of each MHC-group

    Compound Evolutionary History of the Rhesus Macaque Mhc Class I B Region Revealed by Microsatellite Analysis and Localization of Retroviral Sequences

    Get PDF
    In humans, the single polymorphic B locus of the major histocompatibility complex is linked to the microsatellite MIB. In rhesus macaques, however, haplotypes are characterized by the presence of unique combinations of multiple B genes, which may display different levels of polymorphism. The aim of the study was to shed light on the evolutionary history of this highly complex region. First, the robustness of the microsatellite MIB-linked to almost half of the B genes in rhesus macaques (Mamu-B)–for accurate B haplotyping was studied. Based on the physical map of an established haplotype comprising 7 MIB loci, each located next to a certain Mamu-B gene, two MIB loci, MIB1 and MIB6, were investigated in a panel of MHC homozygous monkeys. MIB1 revealed a complex genotyping pattern, whereas MIB6 analysis resulted in the detection of one or no amplicon. Both patterns are specific for a given B haplotype, show Mendelian segregation, and even allow a more precise haplotype definition than do traditional typing methods. Second, a search was performed for retroelements that may have played a role in duplication processes as observed in the macaque B region. This resulted in the description of two types of duplicons. One basic unit comprises an expressed Mamu-B gene, adjacent to an HERV16 copy closely linked to MIB. The second type of duplicon comprises a Mamu-B (pseudo)gene, linked to a truncated HERV16 structure lacking its MIB segment. Such truncation seems to coincide with the loss of B gene transcription. Subsequent to the duplication processes, recombination between MIB and Mamu-B loci appears to have occurred, resulting in a hyperplastic B region. Thus, analysis of MIB in addition to B loci allows deciphering of the compound evolutionary history of the class I B region in Old World monkeys

    Molecular evolution of the human SRPX2 gene that causes brain disorders of the Rolandic and Sylvian speech areas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The X-linked <it>SRPX2 </it>gene encodes a Sushi Repeat-containing Protein of unknown function and is mutated in two disorders of the Rolandic/Sylvian speech areas. Since it is linked to defects in the functioning and the development of brain areas for speech production, <it>SRPX2 </it>may thus have participated in the adaptive organization of such brain regions. To address this issue, we have examined the recent molecular evolution of the <it>SRPX2 </it>gene.</p> <p>Results</p> <p>The complete coding region was sequenced in 24 human X chromosomes from worldwide populations and in six representative nonhuman primate species. One single, fixed amino acid change (R75K) has been specifically incorporated in human SRPX2 since the human-chimpanzee split. The R75K substitution occurred in the first sushi domain of SRPX2, only three amino acid residues away from a previously reported disease-causing mutation (Y72S). Three-dimensional structural modeling of the first sushi domain revealed that Y72 and K75 are both situated in the hypervariable loop that is usually implicated in protein-protein interactions. The side-chain of residue 75 is exposed, and is located within an unusual and SRPX-specific protruding extension to the hypervariable loop. The analysis of non-synonymous/synonymous substitution rate (Ka/Ks) ratio in primates was performed in order to test for positive selection during recent evolution. Using the branch models, the Ka/Ks ratio for the human branch was significantly different (p = 0.027) from that of the other branches. In contrast, the branch-site tests did not reach significance. Genetic analysis was also performed by sequencing 9,908 kilobases (kb) of intronic <it>SRPX2 </it>sequences. Despite low nucleotide diversity, neither the HKA (Hudson-Kreitman-Aguadé) test nor the Tajima's D test reached significance.</p> <p>Conclusion</p> <p>The R75K human-specific variation occurred in an important functional loop of the first sushi domain of SRPX2, indicating that this evolutionary mutation may have functional importance; however, positive selection for R75K could not be demonstrated. Nevertheless, our data contribute to the first understanding of molecular evolution of the human <it>SPRX2 </it>gene. Further experiments are now required in order to evaluate the possible consequences of R75K on SRPX2 interactions and functioning.</p

    A snapshot of the Mamu-B genes and their allelic repertoire in rhesus macaques of Chinese origin

    Get PDF
    The major histocompatibility complex class I gene repertoire was investigated in a large panel of rhesus macaques of Chinese origin. As observed in Indian animals, subjects of Chinese derivation display Mamu-B gene copy number variation, and the sum of expressed genes varies among haplotypes. In addition, these genes display differential transcription levels. The majority of the Mamu-B alleles discovered during this investigation appear to be unique for the population studied. Only one particular Mamu-B haplotype is shared between Indian and Chinese animals, and it must have been present in the progenitor stock. Hence, the data highlight the fact that most allelic polymorphism, and most of the Mamu-B haplotypes themselves, are of relatively recent origin and were most likely generated after the separation of the Indian and Chinese rhesus macaque populations
    corecore