10 research outputs found

    Molecular dynamics simulations of the evaporation of hydrated ions from aqueous solution

    Get PDF
    Although important for atmospheric processes and gas-phase catalysis, very little is known about the hydration state of ions in the vapor phase. Here we study the evaporation energetics and kinetics of a chloride ion from liquid water by molecular dynamics simulations. As chloride permeates the interface, a water finger forms and breaks at a chloride separation of ≈ 2.8 nm from the Gibbs dividing surface. For larger separations from the interface, about 7 water molecules are estimated to stay bound to chloride in saturated water vapor, as corroborated by continuum dielectrics and statistical mechanics models. This ion hydration significantly reduces the free-energy barrier for evaporation. The effective chloride diffusivity in the transition state is found to be about 6 times higher than in bulk, which reflects the highly mobile hydration dynamics as the water finger breaks. Both effects significantly increase the chloride evaporation flux from the quiescent interface of an electrolyte solution, which is predicted from reaction kinetic theory

    Effects of surface rigidity and metallicity on dielectric properties and ion interactions at aqueous hydrophobic interfaces

    Get PDF
    Using classical molecular dynamics simulations, we investigate the dielectric properties at interfaces of water with graphene, graphite, hexane, and water vapor. For graphite, we compare metallic and nonmetallic versions. At the vapor–liquid water and hexane–water interfaces, the laterally averaged dielectric profiles are significantly broadened due to interfacial roughness and only slightly anisotropic. In contrast, at the rigid graphene surface, the dielectric profiles are strongly anisotropic and the perpendicular dielectric profile exhibits pronounced oscillations and sign changes. The interfacial dielectric excess, characterized by the shift of the dielectric dividing surface with respect to the Gibbs dividing surface, is positive for all surfaces, showing that water has an enhanced dielectric response at hydrophobic surfaces. The dielectric dividing surface positions vary significantly among the different surfaces, which points to pronounced surface-specific dielectric behavior. The interfacial repulsion of a chloride ion is shown to be dominated by electrostatic interactions for the soft fluid–fluid interfaces and by non-electrostatic Lennard-Jones interactions for the rigid graphene–water interface. A linear tensorial dielectric model for the ion–interface interaction with sharp dielectric interfaces located on the dielectric dividing surface positions works well for graphene but fails for vapor and hexane, because these interfaces are smeared out. The repulsion of chloride from the metallic and nonmetallic graphite versions differs very little, which reflects the almost identical interfacial water structure and can be understood based on linear continuum dielectric theory. Interface flexibility shows up mostly in the nonlinear Coulomb part of the ion–interface interaction, which changes significantly close to the interfaces and signals the breakdown of linear dielectric continuum theory

    Effects of surface rigidity and metallicity on dielectric properties and ion interactions at aqueous hydrophobic interfaces

    Get PDF
    Using classical molecular dynamics simulations, we investigate the dielectric properties at interfaces of water with graphene, graphite, hexane, and water vapor. For graphite, we compare metallic and nonmetallic versions. At the vapor-liquid water and hexane-water interfaces, the laterally averaged dielectric profiles are significantly broadened due to interfacial roughness and only slightly anisotropic. In contrast, at the rigid graphene surface, the dielectric profiles are strongly anisotropic and the perpendicular dielectric profile exhibits pronounced oscillations and sign changes. The interfacial dielectric excess, characterized by the shift of the dielectric dividing surface with respect to the Gibbs dividing surface, is positive for all surfaces, showing that water has an enhanced dielectric response at hydrophobic surfaces. The dielectric dividing surface positions vary significantly among the different surfaces, which points to pronounced surface-specific dielectric behavior. The interfacial repulsion of a chloride ion is shown to be dominated by electrostatic interactions for the soft fluid-fluid interfaces and by non-electrostatic Lennard-Jones interactions for the rigid graphene-water interface. A linear tensorial dielectric model for the ion-interface interaction with sharp dielectric interfaces located on the dielectric dividing surface positions works well for graphene but fails for vapor and hexane, because these interfaces are smeared out. The repulsion of chloride from the metallic and nonmetallic graphite versions differs very little, which reflects the almost identical interfacial water structure and can be understood based on linear continuum dielectric theory. Interface flexibility shows up mostly in the nonlinear Coulomb part of the ion-interface interaction, which changes significantly close to the interfaces and signals the breakdown of linear dielectric continuum theory

    Water at charged interfaces

    Get PDF
    Gonella G, Backus EHG, Nagata Y, et al. Water at charged interfaces. Nature Reviews Chemistry. 2021;5(July):466-485
    corecore