130 research outputs found

    Image construction from the IRAS survey and data fusion

    Get PDF
    The IRAS survey data can be used successfully to produce images of extended objects. The major difficulty, viz. non-uniform sampling, different response functions for each detector, and varying signal-to-noise levels for each detector for each scan, were resolved. The results of three different image construction techniques are compared: co-addition, constrained least squares, and maximum entropy. The maximum entropy result is superior. An image of the galaxy M51 with an average spatial resolution of 45 arc seconds, is presented using 60 micron survey data. This exceeds the telescope diffraction limit of 1 minute of arc, at this wavelength. Data fusion is a proposed method for combining data from different instruments, with different spatial resolutions, at different wavelengths. Direct estimates of the physical parameters, temperature, density and composition, can be made from the data without prior images (re-)construction. An increase in the accuracy of these parameters is expected as the result of this more systematic approach

    The fate of cannibalized fundamental-plane ellipticals

    Get PDF
    Evolution and disruption of galaxies orbiting in the gravitational field of a larger cluster galaxy are driven by three coupled mechanisms: 1) the heating due to its time dependent motion in the primary; 2) mass loss due to the tidal strain field; and 3) orbital decay. Previous work demonstrated that tidal heating is effective well inside the impulse approximation limit. Not only does the overall energy increase over previous predictions, but the work is done deep inside the secondary galaxy, e.g. at or inside the half mass radius in most cases. Here, these ideas applied to cannibalization of elliptical galaxies with fundamental-plane parameters. In summary, satellites which can fall to the center of a cluster giant by dynamical friction are evaporated by internal heating by the time they reach the center. This suggests that true merger-produced multiple nuclei giants should be rare. Specifically, secondaries with mass ratios as small as 1\% on any initial orbit evaporate and those on eccentric orbits with mass ratios as small as 0.1\% evolve significantly and nearly evaporate in a galaxian age. Captured satellites with mass ratios smaller than roughly 1\% have insufficient time to decay to the center. After many accretion events, the model predicts that the merged system has a profile similar to that of the original primary with a weak increase in concentration.Comment: 19 pages, 10 Postscript figures, uses aaspp4.sty. Submitted to Astrophysical Journa

    CG J1720-67.8: A Detailed Analysis of Optical and Infrared Properties of a New Ultracompact Group of Galaxies

    Get PDF
    We present here optical spectroscopy and BVRJHK(s) photometry of the recently discovered ultra-compact group of galaxies CG J1720-67.8. This work represents a considerable extension of the preliminary results we presented in a previous paper. Despite the complicated morphology of the group, a quantitative morphological classification of the three brightest members of the group is attempted based on photometric analysis. We find that one galaxy is consistent with a morphological type S0, while the other two are most probably late-type spirals that are already losing their identity due tothe interaction process. Information on the star formation activity and dust content derived from both spectroscopic data and optical and near-infrared colors are complemented with a reconstruction of far-infrared (FIR) maps from IRAS raw data. Enhanced star formation activity is revealed in all the group's members, including the early-type galaxy and the extended tidal tail, along which several tidal dwarf galaxy candidates are identified. The metallicity of the gaseous component is investigated and photoionization models are applied to the three main galaxies of the group, while a detailed study of the tidal dwarf candidates will appear in a companion paper. Subsolar metal abundances are found for all the three galaxies, the highest values being shown by the early-type galaxy (Z ~ 0.5 Zsolar).Comment: Accepted for publication in The Astrophysical Journa

    Dissipationless Merging and the Assembly of Central Galaxies

    Full text link
    We reanalyze the galaxy-mass correlation function measured by the Sloan Digital Sky Survey to obtain host dark matter halo masses at galaxy and galaxy group scales. We extend the data to galaxy clusters in the 2MASS catalog and study the relation between central galaxy luminosity and halo mass. While the central galaxy luminosity scales as ~M^{0.7-0.8} at low masses, the relation flattens to ~M^{<0.3} above ~4x10^{13} M_sun. The total luminosity of galaxies in the halo, however, continues to grow as a power-law ~M^{0.8-0.9}. Starting from the hypothesis that the central galaxies grow by merging ("galactic cannibalism"), we develop a simple model for the evolution of their luminosities as a consequence of the accretion of satellite galaxies. The luminosity-mass relation flattens when the time scale on which dynamical friction induces orbital decay in the satellite galaxies exceeds the age of the dark matter halo. Then, the growth of the central galaxy is suppressed as it can cannibalize only the rare, massive satellite galaxies. The model takes the dependence of the total luminosity of galaxies in a halo on its mass and the global galaxy luminosity function as input, and reproduces the observed central galaxy luminosity-mass relation over three decades in halo mass, (10^{12}-10^{15}) M_sun. The success of the model suggests that gas cooling and subsequent star formation did not play an important role in the final assembly of central galaxies from sub-L_star precursors.Comment: 4 pages, 2 figures, submitte

    Історія польських поселень Володарсько-Волинського району

    Get PDF
    В даній роботі описано 10 сіл з переважаючим польським населенням, на що вказують архівні матеріали і опитування жителів сіл

    Accretion of a satellite onto a spherical galaxy. II. Binary evolution and orbital decay

    Get PDF
    We study the dynamical evolution of a satellite orbiting outside of a companion spherical galaxy. The satellite is subject to a back-reaction force resulting from the density fluctuations excited in the primary stellar system. We evaluate this force using the linear response theory developed in Colpi and Pallavicini (1997). The force is computed in the reference frame comoving with the primary galaxy and is expanded in multipoles. To capture the relevant features of the physical process determining the evolution of the detached binary, we introduce in the Hamiltonian the harmonic potential as interaction potential among stars. The dynamics of the satellite is computed self-consistently. We determine the conditions for tidal capture of a satellite from an asymptotic free state. If the binary comes to existence as a bound pair, stability against orbital decay is lost near resonance. The time scale of binary coalescence is computed as a function of the eccentricity and mass ratio. In a comparison with Weinberg's perturbative technique we demonstrate that pinning the center of mass of the galaxy would induce a much larger torque on the satellite.Comment: 13 pages, Tex,+ 10 .ps figures Submitted to The Astrophysical Journa

    Dynamical friction and the evolution of satellites in virialized halos: the theory of linear response

    Get PDF
    The evolution of a small satellite inside a more massive truncated isothermal spherical halo is studied using both the Theory of Linear Response for dynamical friction and N-Body simulations. The analytical approach includes the effects of the gravitational wake, of the tidal deformation and the shift of the barycenter of the primary, so unifying the local versus global interpretation of dynamical friction. Sizes, masses, orbital energies and eccentricities are chosen as expected in hierarchical clustering models. We find that in general the drag force in self-gravitating backgrounds is weaker than in uniform media and that the orbital decay is not accompanied by a significant circularization. We also show that the dynamical friction time scale is weakly dependent on the initial circularity. We provide a fitting formula for the decay time that includes the effect of mass and angular momentum loss. Live satellites with dense cores can survive disruption up to an Hubble time within the primary, notwithstanding the initial choice of orbital parameters. Dwarf spheroidal satellites of the Milky Way, like Sagittarius A and Fornax, have already suffered mass stripping and, with their present masses, the sinking times exceed 10 Gyr even if they are on very eccentric orbits.Comment: 27 pages including 9 figures. Accepted for publication in the Astrophysical Journal. Part 2, issue November 10 1999, Volume 52

    Ejection of Supermassive Black Holes from Galaxy Cores

    Get PDF
    [Abridged] Recent numerical relativity simulations have shown that the emission of gravitational waves during the merger of two supermassive black holes (SMBHs) delivers a kick to the final hole, with a magnitude as large as 4000 km/s. We study the motion of SMBHs ejected from galaxy cores by such kicks and the effects on the stellar distribution using high-accuracy direct N-body simulations. Following the kick, the motion of the SMBH exhibits three distinct phases. (1) The SMBH oscillates with decreasing amplitude, losing energy via dynamical friction each time it passes through the core. Chandrasekhar's theory accurately reproduces the motion of the SMBH in this regime if 2 < ln Lambda < 3 and if the changing core density is taken into account. (2) When the amplitude of the motion has fallen to roughly the core radius, the SMBH and core begin to exhibit oscillations about their common center of mass. These oscillations decay with a time constant that is at least 10 times longer than would be predicted by naive application of the dynamical friction formula. (3) Eventually, the SMBH reaches thermal equilibrium with the stars. We estimate the time for the SMBH's oscillations to damp to the Brownian level in real galaxies and infer times as long as 1 Gyr in the brightest galaxies. Ejection of SMBHs also results in a lowered density of stars near the galaxy center; mass deficits as large as five times the SMBH mass are produced for kick velocities near the escape velocity. We compare the N-body density profiles with luminosity profiles of early-type galaxies in Virgo and show that even the largest observed cores can be reproduced by the kicks, without the need to postulate hypermassive binary SMBHs. Implications for displaced AGNs and helical radio structures are discussed.Comment: 18 pages, The Astrophysical Journal, in press. Replaced with revised versio
    corecore