7 research outputs found

    Ten-year mortality, disease progression, and treatment-related side effects in men with localised prostate cancer from the ProtecT randomised controlled trial according to treatment received

    Get PDF
    Background The ProtecT trial reported intention-to-treat analysis of men with localised prostate cancer randomly allocated to active monitoring (AM), radical prostatectomy, and external beam radiotherapy. Objective To report outcomes according to treatment received in men in randomised and treatment choice cohorts. Design, setting, and participants This study focuses on secondary care. Men with clinically localised prostate cancer at one of nine UK centres were invited to participate in the treatment trial comparing AM, radical prostatectomy, and radiotherapy. Intervention Two cohorts included 1643 men who agreed to be randomised and 997 who declined randomisation and chose treatment. Outcome measurements and statistical analysis Analysis was carried out to assess mortality, metastasis and progression and health-related quality of life impacts on urinary, bowel, and sexual function using patient-reported outcome measures. Analysis was based on comparisons between groups defined by treatment received for both randomised and treatment choice cohorts in turn, with pooled estimates of intervention effect obtained using meta-analysis. Differences were estimated with adjustment for known prognostic factors using propensity scores. Results and limitations According to treatment received, more men receiving AM died of PCa (AM 1.85%, surgery 0.67%, radiotherapy 0.73%), whilst this difference remained consistent with chance in the randomised cohort (p = 0.08); stronger evidence was found in the exploratory analyses (randomised plus choice cohort) when AM was compared with the combined radical treatment group (p = 0.003). There was also strong evidence that metastasis (AM 5.6%, surgery 2.4%, radiotherapy 2.7%) and disease progression (AM 20.35%, surgery 5.87%, radiotherapy 6.62%) were more common in the AM group. Compared with AM, there were higher risks of sexual dysfunction (95% at 6 mo) and urinary incontinence (55% at 6 mo) after surgery, and of sexual dysfunction (88% at 6 mo) and bowel dysfunction (5% at 6 mo) after radiotherapy. The key limitations are the potential for bias when comparing groups defined by treatment received and changes in the protocol for AM during the lengthy follow-up required in trials of screen-detected PCa. Conclusions Analyses according to treatment received showed increased rates of disease-related events and lower rates of patient-reported harms in men managed by AM compared with men managed by radical treatment, and stronger evidence of greater PCa mortality in the AM group. Patient summary More than 95 out of every 100 men with low or intermediate risk localised prostate cancer do not die of prostate cancer within 10 yr, irrespective of whether treatment is by means of monitoring, surgery, or radiotherapy. Side effects on sexual and bladder function are better after active monitoring, but the risks of spreading of prostate cancer are more common

    Functional and quality of life outcomes of localised prostate cancer treatments (prostate testing for cancer and treatment [ProtecT] study)

    Get PDF
    Objective To investigate the functional and quality of life (QoL) outcomes of treatments for localised prostate cancer and inform treatment decision-making. Patients and Methods Men aged 50–69 years diagnosed with localised prostate cancer by prostate-specific antigen testing and biopsies at nine UK centres in the Prostate Testing for Cancer and Treatment (ProtecT) trial were randomised to, or chose one of, three treatments. Of 2565 participants, 1135 men received active monitoring (AM), 750 a radical prostatectomy (RP), 603 external-beam radiotherapy (EBRT) with concurrent androgen-deprivation therapy (ADT) and 77 low-dose-rate brachytherapy (BT, not a randomised treatment). Patient-reported outcome measures (PROMs) completed annually for 6 years were analysed by initial treatment and censored for subsequent treatments. Mixed effects models were adjusted for baseline characteristics using propensity scores. Results Treatment-received analyses revealed different impacts of treatments over 6 years. Men remaining on AM experienced gradual declines in sexual and urinary function with age (e.g., increases in erectile dysfunction from 35% of men at baseline to 53% at 6 years and nocturia similarly from 20% to 38%). Radical treatment impacts were immediate and continued over 6 years. After RP, 95% of men reported erectile dysfunction persisting for 85% at 6 years, and after EBRT this was reported by 69% and 74%, respectively (P < 0.001 compared with AM). After RP, 36% of men reported urinary leakage requiring at least 1 pad/day, persisting for 20% at 6 years, compared with no change in men receiving EBRT or AM (P < 0.001). Worse bowel function and bother (e.g., bloody stools 6% at 6 years and faecal incontinence 10%) was experienced by men after EBRT than after RP or AM (P < 0.001) with lesser effects after BT. No treatment affected mental or physical QoL. Conclusion Treatment decision-making for localised prostate cancer can be informed by these 6-year functional and QoL outcomes

    Radiotherapy for Prostate Cancer: is it ‘what you do’ or ‘the way that you do it’? A UK Perspective on Technique and Quality Assurance

    Full text link

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Phase I Evaluation of Intranasal Trivalent Inactivated Influenza Vaccine with Nontoxigenic Escherichia coli Enterotoxin and Novel Biovector as Mucosal Adjuvants, Using Adult Volunteers

    No full text
    Trivalent influenza virus A/Duck/Singapore (H5N3), A/Panama (H3N2), and B/Guandong vaccine preparations were used in a randomized, controlled, dose-ranging phase I study. The vaccines were prepared from highly purified hemagglutinin and neuraminidase from influenza viruses propagated in embryonated chicken eggs and inactivated with formaldehyde. We assigned 100 participants to six vaccine groups, as follows. Three intranasally vaccinated groups received 7.5-μg doses of hemagglutinin from each virus strain with either 3, 10, or 30 μg of heat-labile Escherichia coli enterotoxin (LTK63) and 990 μg of a supramolecular biovector; one intranasally vaccinated group was given 7.5-μg doses of hemagglutinin with 30 μg of LTK63 without the biovector; and another intranasally vaccinated group received saline solution as a placebo. The final group received an intramuscular vaccine containing 15 μg hemagglutinin from each strain with MF59 adjuvant. The immunogenicity of two intranasal doses, delivered by syringe as drops into both nostrils with an interval of 1 week between, was compared with that of two inoculations by intramuscular delivery 3 weeks apart. The intramuscular and intranasal vaccine formulations were both immunogenic but stimulated different limbs of the immune system. The largest increase in circulating antibodies occurred in response to intramuscular vaccination; the largest mucosal immunoglobulin A (IgA) response occurred in response to mucosal vaccination. Current licensing criteria for influenza vaccines in the European Union were satisfied by serum hemagglutination inhibition responses to A/Panama and B/Guandong hemagglutinins given with MF59 adjuvant by injection and to B/Guandong hemagglutinin given intranasally with the highest dose of LTK63 and the biovector. Geometric mean serum antibody titers by hemagglutination inhibition and microneutralization were significantly higher for each virus strain at 3 and 6 weeks in recipients of the intramuscular vaccine than in recipients of the intranasal vaccine. The immunogenicity of the intranasally delivered experimental vaccine varied by influenza virus strain. Mucosal IgA responses to A/Duck/Singapore (H5N3), A/Panama (H3N2), and B/Guandong were highest in participants given 30 μg LTK63 with the biovector, occurring in 7/15 (47%; P = 0.0103), 8/15 (53%; P = 0.0362), and 14/15 (93%; P = 0.0033) participants, respectively, compared to the placebo group. The addition of the biovector to the vaccine given with 30 μg LTK63 enhanced mucosal IgA responses to A/Duck/Singapore (H5N3) (P = 0.0491) and B/Guandong (P = 0.0028) but not to A/Panama (H3N2). All vaccines were well tolerated

    Radiotherapy for prostate cancer: is it ‘what you do’ or ‘the way that you do it’? A UK perspective on technique and quality assurance

    Get PDF
    Aims: The treatment of prostate cancer has evolved markedly over the last 40 years, including radiotherapy, notably with escalated dose and targeting. However, the optimal treatment for localised disease has not been established in comparative randomised trials. The aim of this article is to describe the history of prostate radiotherapy trials, including their quality assurance processes, and to compare these with the ProtecT trial. Materials and methods: The UK ProtecT randomised trial compares external beam conformal radiotherapy, surgery and active monitoring for clinically localised prostate cancer and will report on the primary outcome (disease-specific mortality) in 2016 following recruitment between 1999 and 2009. The embedded quality assurance programme consists of on-site machine dosimetry at the nine trial centres, a retrospective review of outlining and adherence to dose constraints based on the trial protocol in 54 participants (randomly selected, around 10% of the total randomised to radiotherapy, n = 545). These quality assurance processes and results were compared with prostate radiotherapy trials of a comparable era. Results: There has been an increasingly sophisticated quality assurance programme in UK prostate radiotherapy trials over the last 15 years, reflecting dose escalation and treatment complexity. In ProtecT, machine dosimetry results were comparable between trial centres and with the UK RT01 trial. The outlining review showed that most deviations were clinically acceptable, although three (1.4%) may have been of clinical significance and were related to outlining of the prostate. Seminal vesicle outlining varied, possibly due to several prostate trials running concurrently with different protocols. Adherence to dose constraints in ProtecT was considered acceptable, with 80% of randomised participants having two or less deviations and planning target volume coverage was excellent. Conclusion: The ProtecT trial quality assurance results were satisfactory and comparable with trials of its era. Future trials should aim to standardise treatment protocols and quality assurance programmes where possible to reduce complexities for centres involved in multiple trials
    corecore