426 research outputs found

    Random sequential adsorption on a dashed line

    Full text link
    We study analytically and numerically a model of random sequential adsorption (RSA) of segments on a line, subject to some constraints suggested by two kinds of physical situations: - deposition of dimers on a lattice where the sites have a spatial extension; - deposition of extended particles which must overlap one (or several) adsorbing sites on the substrate. Both systems involve discrete and continuous degrees of freedom, and, in one dimension, are equivalent to our model, which depends on one length parameter. When this parameter is varied, the model interpolates between a variety of known situations : monomers on a lattice, "car-parking" problem, dimers on a lattice. An analysis of the long-time behaviour of the coverage as a function of the parameter exhibits an anomalous 1/t^2 approach to the jamming limit at the transition point between the fast exponential kinetics, characteristic of the lattice model, and the 1/t law of the continuous one.Comment: 14 pages (Latex) + 4 Postscript figure

    Irreversible Deposition of Line Segment Mixtures on a Square Lattice: Monte Carlo Study

    Full text link
    We have studied kinetics of random sequential adsorption of mixtures on a square lattice using Monte Carlo method. Mixtures of linear short segments and long segments were deposited with the probability pp and 1p1-p, respectively. For fixed lengths of each segment in the mixture, the jamming limits decrease when pp increases. The jamming limits of mixtures always are greater than those of the pure short- or long-segment deposition. For fixed pp and fixed length of the short segments, the jamming limits have a maximum when the length of the long segment increases. We conjectured a kinetic equation for the jamming coverage based on the data fitting.Comment: 7 pages, latex, 5 postscript figure

    A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment.

    Get PDF
    OBJECTIVES: The aim of this study was to investigate pathological mechanisms underlying brain tissue alterations in mild cognitive impairment (MCI) using multi-contrast 3 T magnetic resonance imaging (MRI). METHODS: Forty-two MCI patients and 77 healthy controls (HC) underwent T1/T2* relaxometry as well as Magnetization Transfer (MT) MRI. Between-groups comparisons in MRI metrics were performed using permutation-based tests. Using MRI data, a generalized linear model (GLM) was computed to predict clinical performance and a support-vector machine (SVM) classification was used to classify MCI and HC subjects. RESULTS: Multi-parametric MRI data showed microstructural brain alterations in MCI patients vs HC that might be interpreted as: (i) a broad loss of myelin/cellular proteins and tissue microstructure in the hippocampus (p ≤ 0.01) and global white matter (p < 0.05); and (ii) iron accumulation in the pallidus nucleus (p ≤ 0.05). MRI metrics accurately predicted memory and executive performances in patients (p ≤ 0.005). SVM classification reached an accuracy of 75% to separate MCI and HC, and performed best using both volumes and T1/T2*/MT metrics. CONCLUSION: Multi-contrast MRI appears to be a promising approach to infer pathophysiological mechanisms leading to brain tissue alterations in MCI. Likewise, parametric MRI data provide powerful correlates of cognitive deficits and improve automatic disease classification based on morphometric features

    MP2RAGE provides new clinically-compatible correlates of mild cognitive deficits in relapsing-remitting multiple sclerosis.

    Get PDF
    Despite that cognitive impairment is a known early feature present in multiple sclerosis (MS) patients, the biological substrate of cognitive deficits in MS remains elusive. In this study, we assessed whether T1 relaxometry, as obtained in clinically acceptable scan times by the recent Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) sequence, may help identifying the structural correlate of cognitive deficits in relapsing-remitting MS patients (RRMS). Twenty-nine healthy controls (HC) and forty-nine RRMS patients underwent high-resolution 3T magnetic resonance imaging to obtain optimal cortical lesion (CL) and white matter lesion (WML) count/volume and T1 relaxation times. T1 z scores were then obtained between T1 relaxation times in lesion and the corresponding HC tissue. Patient cognitive performance was tested using the Brief Repeatable Battery of Neuro-psychological Tests. Multivariate analysis was applied to assess the contribution of MRI variables (T1 z scores, lesion count/volume) to cognition in patients and Bonferroni correction was applied for multiple comparison. T1 z scores were higher in WML (p < 0.001) and CL-I (p < 0.01) than in the corresponding normal-appearing tissue in patients, indicating relative microstructural loss. (1) T1 z scores in CL-I (p = 0.01) and the number of CL-II (p = 0.04) were predictors of long-term memory; (2) T1 z scores in CL-I (β = 0.3; p = 0.03) were independent determinants of long-term memory storage, and (3) lesion volume did not significantly influenced cognitive performances in patients. Our study supports evidence that T1 relaxometry from MP2RAGE provides information about microstructural properties in CL and WML and improves correlation with cognition in RRMS patients, compared to conventional measures of disease burden

    Fractal dimension and degree of order in sequential deposition of mixture

    Full text link
    We present a number models describing the sequential deposition of a mixture of particles whose size distribution is determined by the power-law p(x)αxα1p(x) \sim \alpha x^{\alpha-1}, xlx\leq l . We explicitly obtain the scaling function in the case of random sequential adsorption (RSA) and show that the pattern created in the long time limit becomes scale invariant. This pattern can be described by an unique exponent, the fractal dimension. In addition, we introduce an external tuning parameter beta to describe the correlated sequential deposition of a mixture of particles where the degree of correlation is determined by beta, while beta=0 corresponds to random sequential deposition of mixture. We show that the fractal dimension of the resulting pattern increases as beta increases and reaches a constant non-zero value in the limit β\beta \to \infty when the pattern becomes perfectly ordered or non-random fractals.Comment: 16 pages Latex, Submitted to Phys. Rev.

    Critical properties of Ising model on Sierpinski fractals. A finite size scaling analysis approach

    Full text link
    The present paper focuses on the order-disorder transition of an Ising model on a self-similar lattice. We present a detailed numerical study, based on the Monte Carlo method in conjunction with the finite size scaling method, of the critical properties of the Ising model on some two dimensional deterministic fractal lattices with different Hausdorff dimensions. Those with finite ramification order do not display ordered phases at any finite temperature, whereas the lattices with infinite connectivity show genuine critical behavior. In particular we considered two Sierpinski carpets constructed using different generators and characterized by Hausdorff dimensions d_H=log 8/log 3 = 1.8927.. and d_H=log 12/log 4 = 1.7924.., respectively. The data show in a clear way the existence of an order-disorder transition at finite temperature in both Sierpinski carpets. By performing several Monte Carlo simulations at different temperatures and on lattices of increasing size in conjunction with a finite size scaling analysis, we were able to determine numerically the critical exponents in each case and to provide an estimate of their errors. Finally we considered the hyperscaling relation and found indications that it holds, if one assumes that the relevant dimension in this case is the Hausdorff dimension of the lattice.Comment: 21 pages, 7 figures; a new section has been added with results for a second fractal; there are other minor change

    A strong-coupling analysis of two-dimensional O(N) sigma models with N3N\geq 3 on square, triangular and honeycomb lattices

    Full text link
    Recently-generated long strong-coupling series for the two-point Green's functions of asymptotically free O(N){\rm O}(N) lattice σ\sigma models are analyzed, focusing on the evaluation of dimensionless renormalization-group invariant ratios of physical quantities and applying resummation techniques to series in the inverse temperature β\beta and in the energy EE. Square, triangular, and honeycomb lattices are considered, as a test of universality and in order to estimate systematic errors. Large-NN solutions are carefully studied in order to establish benchmarks for series coefficients and resummations. Scaling and universality are verified. All invariant ratios related to the large-distance properties of the two-point functions vary monotonically with NN, departing from their large-NN values only by a few per mille even down to N=3N=3.Comment: 53 pages (incl. 5 figures), tar/gzip/uuencode, REVTEX + psfi

    Perspectives on Andean Prehistory and Protohistory: Papers from the Third Annual Northeast Conference on Andean Archaeology and Ethnohistory

    Get PDF
    This volume represents eight of the eighteen papers presented at the Third Northeast Conference on Andean Archaeology and Ethnohistory held at the University of Massachusetts, Amherst on October 27 and 28, 1984. It also includes a paper presented at the Second NCAAE held at the American Museum of Natural History on November 19-20, 1983. The papers include: Wandering Shellfish: New Insights from Southeastern Coastal Ecuador by Patricia Netherly, Late Prehistoric Terracing at Chijra in the Collca Valley, Peru: Preliminary Report I by Michael A. Malpass, The Topara Tradition: An Overview by Dwight T. Wallace, The Peruvian North Central Coast During the Early Intermediate Period: An Emerging Perspective by Richard E. Daggett, A Sequence of Monumental Architecture from Huamanchuco by John R. Topic, Duality in Public Architecture in the Upper Zena Valley by Patricia J. Netherly and Tom D. Dillehay, Piruru: A Preliminary Report on the Archaeological Botany of a Highland Andean Site by Lawrence Kaplan and Elisabeth Bonnier, Analysis of Organic Remains from Huamachuco Qollqas by Coreen E. Chiswell, Aspects of Casting Practice in Prehispanic Peru by Stuart V. Arnold, and Representations of the Cosmos: A Comparison of the Church of San Cristobal de Pampachiri with the Coricancha Drawing of Santacruz Pachacuti Yamqui Salcamaygua by Monica Barnes.https://digitalcommons.library.umaine.edu/andean_past_special/1000/thumbnail.jp

    Polydisperse Adsorption: Pattern Formation Kinetics, Fractal Properties, and Transition to Order

    Full text link
    We investigate the process of random sequential adsorption of polydisperse particles whose size distribution exhibits a power-law dependence in the small size limit, P(R)Rα1P(R)\sim R^{\alpha-1}. We reveal a relation between pattern formation kinetics and structural properties of arising patterns. We propose a mean-field theory which provides a fair description for sufficiently small α\alpha. When α\alpha \to \infty, highly ordered structures locally identical to the Apollonian packing are formed. We introduce a quantitative criterion of the regularity of the pattern formation process. When α1\alpha \gg 1, a sharp transition from irregular to regular pattern formation regime is found to occur near the jamming coverage of standard random sequential adsorption with monodisperse size distribution.Comment: 8 pages, LaTeX, 5 figures, to appear in Phys.Rev.
    corecore