9,772 research outputs found

    The eclipsing bursting X-ray binary EXO 0748-676 revisited by XMM-Newton

    Get PDF
    The bright eclipsing and bursting low-mass X-ray binary EXO 0748-676 has been observed at several occasions by XMM-Newton during the initial calibration and performance verification (CAL/PV) phase. We present here the results obtained from observations with the EPIC cameras. Apart from several type-I X-ray bursts, the source shows a high degree of variability with the presence of soft flares. The wide energy coverage and high sensitivity of XMM-Newton allows for the first time a detailed description of the spectral variability. The source is found to be the superposition of a central (~2 10^8 cm) Comptonized emission, most probably a corona surrounding the inner edge of an accretion disk, associated with a more extended (~3 10^10 cm) thermal halo at a typical temperature of ~0.6 keV with an indication of non-solar abundances. Most of the variations of the source can be accounted for by a variable absorption affecting only the central comptonized component and reaching up to NH ~1.3 10^23 cm^{-2}. The characteristics of the surrounding halo are found compatible with an irradiated atmosphere of an accretion disc which intercepts the central emission due to the system high inclination.Comment: 6 pages, 4 figures, accepted for publication in A&A Letters, XMM special issu

    The X-ray emission of magnetic cataclysmic variables in the XMM-Newton era

    Full text link
    We review the X-ray spectral properties of magnetic cataclysmic binaries derived from observations obtained during the last decade with the large X-ray observatories XMM-Newton, Chandra and Suzaku. We focus on the signatures of the different accretion modes which are predicted according to the values of the main physical parameters (magnetic field, local accretion rate and white dwarf mass). The observed large diversity of spectral behaviors indicates a wide range of parameter values in both intermediate polars and polars, in line with a possible evolutionary link between both classes.Comment: To appear in the Proceedings of "The Golden Age of Cataclysmic Variables (Palermo 2011)", in Mem. Soc. Astron. It. (7 pages, 3 figures

    Reducing the Number of Sputum Samples Examined and Thresholds for Positivity: An Opportunity to Optimise Smear Microscopy.

    Get PDF
    SETTING: Urban health clinic, Nairobi. OBJECTIVE: To evaluate the impact on tuberculosis (TB) case detection and laboratory workload of reducing the number of sputum smears examined and thresholds for diagnosing positive smears and positive cases. DESIGN: In this prospective study, three Ziehl-Neelsen stained sputum smears from consecutive pulmonary TB suspects were examined blind. The standard approach (A), > or = 2 positive smears out of 3, using a cut-off of 10 acid-fast bacilli (AFB)/100 high-power fields (HPF), was compared with approaches B, > or = 2 positive smears (> or = 4 AFB/100 HPF) out of 3, one of which is > or = 10 AFB/100 HPF; C, > or = 2 positive smears (> or = 4 AFB/100 HPF) out of 3; D, > or = 1 positive smear (> or = 10 AFB/100 HPF) out of 2; and E, > or = 1 positive smear (> or = 4 AFB/100 HPF) out of 2. The microscopy gold standard was detection of at least one positive smear (> or = 4 AFB/100 HPF) out of 3. RESULTS: Among 644 TB suspects, the alternative approaches detected from 114 (17.7%) (approach B) to 123 cases (19.1%) (approach E) compared to 105 cases (16.3%) for approach A (P < 0.005). Sensitivity ranged between 82.0% (105/128) for A and 96.1% (123/128) for E. The single positive smear approaches reduced the number of smears by 36% compared to approach A. CONCLUSION: Reducing the number of specimens and the positivity threshold to define a positive case increased the sensitivity of microscopy and reduced laboratory workload

    The ephemeris, orbital decay, and masses of 10 eclipsing HMXBs

    Get PDF
    We take advantage of more than 10 years of monitoring of the eclipsing HMXB systems LMC X-4, Cen X-3, 4U 1700-377, 4U 1538-522, SMC X-1, IGR J18027-2016, Vela X-1, IGR J17252-3616, XTE J1855-026, and OAO 1657-415 with the ASM on-board RXTE and ISGRI on-board INTEGRAL to update their ephemeris. These results are used to refine previous measurements of the orbital period decay of all sources (where available) and provide the first accurate values of the apsidal advance in Vela X-1 and 4U 1538-522. Updated values for the masses of the neutron stars hosted in the ten HMXBs are also provided, as well as the long-term lightcurves folded on the sources best determined orbital parameters. These lightcurves reveal complex eclipse ingresses and egresses, that are understood mostly as being due to the presence of accretion wakes. The results reported in this paper constitute a database to be used for population and evolutionary studies of HMXBs, as well as theoretical modelling of long-term accretion in wind-fed X-ray binaries.Comment: Accepted for publication on A&

    Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies

    Get PDF
    We present an analysis of multifragmentation events observed in central Xe+Sn reactions at Fermi energies. Performing a comparison between the predictions of the Stochastic Mean Field (SMF) transport model and experimental data, we investigate the impact of the compression-expansion dynamics on the properties of the final reaction products. We show that the amount of radial collective expansion, which characterizes the dynamical stage of the reaction, influences directly the onset of multifragmentation and the kinematic properties of multifragmentation events. For the same set of events we also undertake a shape analysis in momentum space, looking at the degree of stopping reached in the collision, as proposed in recent experimental studies. We show that full stopping is achieved for the most central collisions at Fermi energies. However, considering the same central event selection as in the experimental data, we observe a similar behavior of the stopping power with the beam energy, which can be associated with a change of the fragmentation mechanism, from statistical to prompt fragment emission.Comment: 15 page

    Evolution of the decay mechanisms in central collisions of XeXe + SnSn from E/AE/A = 8 to 29 MeVMeV

    Full text link
    Collisions of Xe+Sn at beam energies of E/AE/A = 8 to 29 MeVMeV and leading to fusion-like heavy residues are studied using the 4Ď€4\pi INDRA multidetector. The fusion cross section was measured and shows a maximum at E/AE/A = 18-20 MeVMeV. A decomposition into four exit-channels consisting of the number of heavy fragments produced in central collisions has been made. Their relative yields are measured as a function of the incident beam energy. The energy spectra of light charged particles (LCP) in coincidence with the fragments of each exit-channel have been analyzed. They reveal that a composite system is formed, it is highly excited and first decays by emitting light particles and then may breakup into 2- or many- fragments or survives as an evaporative residue. A quantitative estimation of this primary emission is given and compared to the secondary decay of the fragments. These analyses indicate that most of the evaporative LCP precede not only fission but also breakup into several fragments.Comment: Invited Talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    QPTAS and Subexponential Algorithm for Maximum Clique on Disk Graphs

    Get PDF
    A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an elegant polynomial-time algorithm was found for Maximum Clique on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics '90]. Since then, it has been an intriguing open question whether or not tractability can be extended to general disk graphs. We show the rather surprising structural result that a disjoint union of cycles is the complement of a disk graph if and only if at most one of those cycles is of odd length. From that, we derive the first QPTAS and subexponential algorithm running in time 2^{O~(n^{2/3})} for Maximum Clique on disk graphs. In stark contrast, Maximum Clique on intersection graphs of filled ellipses or filled triangles is unlikely to have such algorithms, even when the ellipses are close to unit disks. Indeed, we show that there is a constant ratio of approximation which cannot be attained even in time 2^{n^{1-epsilon}}, unless the Exponential Time Hypothesis fails
    • …
    corecore