304 research outputs found

    Excitation Spectra of the Linear Alternating Antiferromagnet

    Get PDF
    The linear, spin- ½ , alternating Heisenberg chain has attracted theoretical and experimental attention from physical chemists for about two decades, particularly in relation to spin exciton theory and the properties of linear, exchange-coupled free radicals. The model is somewhat unfamiliar to physicists but has become of increasing interest recently, primarily because of its relation to spin-Peierls transition systems. A striking feature of this model is that it has so far proved resistant to any form of analytic attack. Existing theories are therefore all approximate, and are not in agreement with one another. In particular, there is disagreement about the existence of an energy gap in the excitation spectrum for nonzero alternation, such a gap being crucial to spin-Peierls theory and spin exciton theory. In this paper we employ the method which has so far proved more reliable than any other approximate technique, namely the method of extrapolating exact finite-chain calculations to the thermodynamic limit. Our study is an extension of earlier work in this direction, and focuses on the nature of the ground state and on low-lying excitations in general, and the existence and properties of the gap in particular. We introduce the features of the linear alternating antiferromagnet through an initial description of the spin-Peierls transition and with brief reference to organic free radicals and spin exciton theory. This is followed by a survey of existing approximate theories. Features of the excitation spectrum are discussed and finite-chain extrapolations for the ground-state energy and energy gap as a function of alternation are presented. Comparisons are made with similar procedures performed on exactly solvable models, as a test of the expected accuracy of the extrapolations. Excitation spectra for a variety of other alternating models, classical and quantum, are calculated and surveyed comparatively. An unusual variety of behavior is observed, with striking differences between quantum and classical systems. Finally, a detailed comparison is made between our results and those of other approximate methods, including the new quantum renormalization-group approach. Particular attention is paid to values for the T = 0 spin-Peierls critical exponents

    Unusual Critical Behavior in a Bilinear‐Biquadratic Exchange Hamiltonian

    Get PDF
    We have performed a variety of numerical studies on the general bilinear‐biquadratic spin‐1 Hamiltonian H/J=∑ N i=1[S i ⋅S i+1 −β(S i ⋅S i+1)2], over the range 0≤β≤∞. The model is Bethe Ansatz integrable at the special point β=1, where the spectrum is gapless, but is otherwise believed to be nonintegrable. Affleck has predicted that an excitation gap opens up linearly in the vicinity of β=1. Our studies involving spectral excitations (dispersion spectra), scaled‐gap, and finite‐size scaling calculations are not consistent with the Affleck prediction. The situation appears complex, with novel crossover effects occurring in both regimes, ββ\u3e1, complicating the analysis

    Simple Front End Electronics for Multigap Resistive Plate Chambers

    Full text link
    A simple circuit for the presentation of the signals from Multi-gap Resistive Plate Chambers (MRPCs) to standard existing digitization electronics is described. The circuit is based on "off-the-shelf" discrete components. An optimization of the values of specific components is required to match the aspects of the MRPCs for the given application. This simple circuit is an attractive option for the initial signal processing for MRPC prototyping and bench- or beam-testing efforts, as well as for final implementations of small-area Time-of-Flight systems with existing data acquisition systems.Comment: submitted to Nucl. Inst. and Methods, Section

    Observation of exclusive DVCS in polarized electron beam asymmetry measurements

    Full text link
    We report the first results of the beam spin asymmetry measured in the reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry with a sin(phi) modulation is observed, as predicted for the interference term of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and leading-twist pQCD, the alpha is directly proportional to the imaginary part of the DVCS amplitude.Comment: 6 pages, 5 figure

    Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV

    Full text link
    The three-body photodisintegration of 3He has been measured with the CLAS detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first time to cover a wide momentum and angular range for the two outgoing protons. Three kinematic regions dominated by either two- or three-body contributions have been distinguished and analyzed. The measured cross sections have been compared with results of a theoretical model, which, in certain kinematic ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications: removed 2 figures, improvements on others, a few minor modifications to the tex

    eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV

    Full text link
    Differential cross sections for the reaction gamma p -> eta-prime p have been measured with the CLAS spectrometer and a tagged photon beam with energies from 1.527 to 2.227 GeV. The results reported here possess much greater accuracy than previous measurements. Analyses of these data indicate for the first time the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710) resonances, known to couple strongly to the eta N channel in photoproduction on the proton, and the importance of j=3/2 resonances in the process.Comment: 6 pages, 3 figure

    Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV

    Full text link
    We present the first measurement of directed flow (v1v_1) at RHIC. v1v_1 is found to be consistent with zero at pseudorapidities η\eta from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4<η<42.4 < |\eta| < 4. The latter observation is similar to data from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. Back-to-back jets emitted out-of-plane are found to be suppressed more if compared to those emitted in-plane, which is consistent with {\it jet quenching}. Using the scalar product method, we systematically compared azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure

    Azimuthal anisotropy: the higher harmonics

    Full text link
    We report the first observations of the fourth harmonic (v_4) in the azimuthal distribution of particles at RHIC. The measurement was done taking advantage of the large elliptic flow generated at RHIC. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding

    Plasma Wakefield Acceleration with a Modulated Proton Bunch

    Get PDF
    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.Comment: 9 pages, 7 figure

    The energy dependence of ptp_t angular correlations inferred from mean-ptp_{t} fluctuation scale dependence in heavy ion collisions at the SPS and RHIC

    Get PDF
    We present the first study of the energy dependence of ptp_t angular correlations inferred from event-wise mean transverse momentum fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure suggests that the principal source of $p_t$ correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related fluctuations near 10 GeV.Comment: 10 pages, 4 figure
    corecore