141 research outputs found

    The Comparison between Circadian Oscillators in Mouse Liver and Pituitary Gland Reveals Different Integration of Feeding and Light Schedules

    Get PDF
    The mammalian circadian system is composed of multiple peripheral clocks that are synchronized by a central pacemaker in the suprachiasmatic nuclei of the hypothalamus. This system keeps track of the external world rhythms through entrainment by various time cues, such as the light-dark cycle and the feeding schedule. Alterations of photoperiod and meal time modulate the phase coupling between central and peripheral oscillators. In this study, we used real-time quantitative PCR to assess circadian clock gene expression in the liver and pituitary gland from mice raised under various photoperiods, or under a temporal restricted feeding protocol. Our results revealed unexpected differences between both organs. Whereas the liver oscillator always tracked meal time, the pituitary circadian clockwork showed an intermediate response, in between entrainment by the light regimen and the feeding-fasting rhythm. The same composite response was also observed in the pituitary gland from adrenalectomized mice under daytime restricted feeding, suggesting that circulating glucocorticoids do not inhibit full entrainment of the pituitary clockwork by meal time. Altogether our results reveal further aspects in the complexity of phase entrainment in the circadian system, and suggest that the pituitary may host oscillators able to integrate multiple time cues

    An Accurate Definition of the Status of Inactive Hepatitis B Virus Carrier by a Combination of Biomarkers (FibroTest-ActiTest) and Viral Load

    Get PDF
    BACKGROUND: The combination of transaminases (ALT), biopsy, HBeAg and viral load have classically defined the inactive status of carriers of chronic hepatitis B. The use of FibroTest (FT) and ActiTest (AT), biomarkers of fibrosis and necroinflammatory activity, has been previously validated as alternatives to biopsy. We compared the 4-year prognostic value of combining FT-AT and viral load for a better definition of the inactive carrier status. METHODS AND FINDINGS: 1,300 consecutive CHB patients who had been prospectively followed since 2001 were pre-included. The main endpoint was the absence of liver-related complications, transplantation or death. We used the manufacturers' definitions of normal FT (< = 0.27), normal AT (< = 0.29) and 3 standard classes for viral load. The adjustment factors were age, sex, HBeAg, ethnic origin, alcohol consumption, HIV-Delta-HCV co-infections and treatment. RESULTS: 1,074 patients with baseline FT-AT and viral load were included: 41 years old, 47% African, 27% Asian, 26% Caucasian. At 4 years follow-up, 50 complications occurred (survival without complications 93.4%), 36 deaths occurred (survival 95.0%), including 27 related to HBV (survival 96.1%). The prognostic value of FT was higher than those of viral load or ALT when compared using area under the ROC curves [0.89 (95%CI 0.84-0.93) vs 0.64 (0.55-0.71) vs 0.53 (0.46-0.60) all P<0.001], survival curves and multivariate Cox model [regression coefficient 5.2 (3.5-6.9; P<0.001) vs 0.53 (0.15-0.92; P = 0.007) vs -0.001 (-0.003-0.000;P = 0.052)] respectively. A new definition of inactive carriers was proposed with an algorithm combining "zero" scores for FT-AT (F0 and A0) and viral load classes. This new algorithm provides a 100% negative predictive value for the prediction of liver related complications or death. Among the 275 patients with the classic definition of inactive carrier, 62 (23%) had fibrosis presumed with FT, and 3 died or had complications at 4 year. CONCLUSION: In patients with chronic hepatitis B, a combination of FibroTest-ActiTest and viral load testing accurately defined the prognosis and the inactive carrier status

    Pituitary-hormone secretion by thyrotropinomas

    Get PDF
    Hormone secretion by somatotropinomas, corticotropinomas and prolactinomas exhibits increased pulse frequency, basal and pulsatile secretion, accompanied by greater disorderliness. Increased concentrations of growth hormone (GH) or prolactin (PRL) are observed in about 30% of thyrotropinomas leading to acromegaly or disturbed sexual functions beyond thyrotropin (TSH)-induced hyperthyroidism. Regulation of non-TSH pituitary hormones in this context is not well understood. We there therefore evaluated TSH, GH and PRL secretion in 6 patients with up-to-date analytical and mathematical tools by 24-h blood sampling at 10-min intervals in a clinical research laboratory. The profiles were analyzed with a new deconvolution method, approximate entropy, cross-approximate entropy, cross-correlation and cosinor regression. TSH burst frequency and basal and pulsatile secretion were increased in patients compared with controls. TSH secretion patterns in patients were more irregular, but the diurnal rhythm was preserved at a higher mean with a 2.5 h phase delay. Although only one patient had clinical acromegaly, GH secretion and IGF-I levels were increased in two other patients and all three had a significant cross-correlation between the GH and TSH. PRL secretion was increased in one patient, but all patients had a significant cross-correlation with TSH and showed decreased PRL regularity. Cross-ApEn synchrony between TSH and GH did not differ between patients and controls, but TSH and PRL synchrony was reduced in patients. We conclude that TSH secretion by thyrotropinomas shares many characteristics of other pituitary hormone-secreting adenomas. In addition, abnormalities in GH and PRL secretion exist ranging from decreased (joint) regularity to overt hypersecretion, although not always clinically obvious, suggesting tumoral transformation of thyrotrope lineage cells

    Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The existence of a genetic basis for host responses to bacterial intramammary infections has been widely documented, but the underlying mechanisms and the genes are still largely unknown. Previously, two divergent lines of sheep selected for high/low milk somatic cell scores have been shown to be respectively susceptible and resistant to intramammary infections by <it>Staphylococcus spp</it>. Transcriptional profiling with an 15K ovine-specific microarray of the milk somatic cells of susceptible and resistant sheep infected successively by <it>S. epidermidis </it>and <it>S. aureus </it>was performed in order to enhance our understanding of the molecular and cellular events associated with mastitis resistance.</p> <p>Results</p> <p>The bacteriological titre was lower in the resistant than in the susceptible animals in the 48 hours following inoculation, although milk somatic cell concentration was similar. Gene expression was analysed in milk somatic cells, mainly represented by neutrophils, collected 12 hours post-challenge. A high number of differentially expressed genes between the two challenges indicated that more T cells are recruited upon inoculation by <it>S. aureus </it>than <it>S. epidermidis</it>. A total of 52 genes were significantly differentially expressed between the resistant and susceptible animals. Further Gene Ontology analysis indicated that differentially expressed genes were associated with immune and inflammatory responses, leukocyte adhesion, cell migration, and signal transduction. Close biological relationships could be established between most genes using gene network analysis. Furthermore, gene expression suggests that the cell turn-over, as a consequence of apoptosis/granulopoiesis, may be enhanced in the resistant line when compared to the susceptible line.</p> <p>Conclusions</p> <p>Gene profiling in resistant and susceptible lines has provided good candidates for mapping the biological pathways and genes underlying genetically determined resistance and susceptibility towards <it>Staphylococcus </it>infections, and opens new fields for further investigation.</p

    J Med Genet

    Get PDF
    BACKGROUND: Mitochondrial DNA (mtDNA) diseases are rare disorders whose prevalence is estimated around 1 in 5000. Patients are usually tested only for deletions and for common mutations of mtDNA which account for 5-40% of cases, depending on the study. However, the prevalence of rare mtDNA mutations is not known. METHODS: We analysed the whole mtDNA in a cohort of 743 patients suspected of manifesting a mitochondrial disease, after excluding deletions and common mutations. Both heteroplasmic and homoplasmic variants were identified using two complementary strategies (Surveyor and MitoChip). Multiple correspondence analyses followed by hierarchical ascendant cluster process were used to explore relationships between clinical spectrum, age at onset and localisation of mutations. RESULTS: 7.4% of deleterious mutations and 22.4% of novel putative mutations were identified. Pathogenic heteroplasmic mutations were more frequent than homoplasmic mutations (4.6% vs 2.8%). Patients carrying deleterious mutations showed symptoms before 16 years of age in 67% of cases. Early onset disease (16 years) were associated with mutations in tRNA genes. MTND5 and MTND6 genes were identified as 'hotspots' of mutations, with Leigh syndrome accounting for the large majority of associated phenotypes. CONCLUSIONS: Rare mitochondrial DNA mutations probably account for more than 7.4% of patients with respiratory chain deficiency. This study shows that a comprehensive analysis of mtDNA is essential, and should include young children, for an accurate diagnosis that is now accessible with the development of next generation sequencing technolog

    An updated view of hypothalamic-vascular-pituitary unit function and plasticity

    Get PDF
    The discoveries of novel functional adaptations of the hypothalamus and anterior pituitary gland for physiological regulation have transformed our understanding of their interaction. The activity of a small proportion of hypothalamic neurons can control complex hormonal signalling, which is disconnected from a simple stimulus and the subsequent hormone secretion relationship and is dependent on physiological status. The interrelationship of the terminals of hypothalamic neurons and pituitary cells with the vasculature has an important role in determining the pattern of neurohormone exposure. Cells in the pituitary gland form networks with distinct organizational motifs that are related to the duration and pattern of output, and modifications of these networks occur in different physiological states, can persist after cessation of demand and result in enhanced function. Consequently, the hypothalamus and pituitary can no longer be considered as having a simple stratified relationship: with the vasculature they form a tripartite system, which must function in concert for appropriate hypothalamic regulation of physiological processes, such as reproduction. An improved understanding of the mechanisms underlying these regulatory features has implications for current and future therapies that correct defects in hypothalamic–pituitary axes. In addition, recapitulating proper network organization will be an important challenge for regenerative stem cell treatment

    Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain

    No full text
    International audienceThe worldwide proliferation of mobile phones raises the question of the effects of 900-MHz electromagnetic fields (EMF) on the brain. Using a head-only exposure device in the rat, we showed that a 15-min exposure to 900-MHz pulsed microwaves at a high brain-averaged power of 6 W/kg induced a strong glial reaction in the brain. This effect, which suggests neuronal damage, was particularly pronounced in the striatum. Moreover, we observed significant and immediate effects on the K-d and B-max values of N-methyl-D-aspartate (NMDA) and GABA(A) receptors as well as on dopamine transporters. Decrease of the amount of NMDA receptors at the postsynaptic membrane is also reported. Although we showed that the rat general locomotor behavior was not significantly altered on the short term, our results provide the first evidence for rapid cellular and molecular alterations in the rat brain after an acute exposure to high power GSM (Global System for Mobile communication) 900-MHz microwaves
    • 

    corecore