
a SpringerOpen Journal

Bloomer and Lee SpringerPlus 2013, 2:553
http://www.springerplus.com/content/2/1/553

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref
RESEARCH Open Access
Women experience lower postprandial oxidative
stress compared to men
Richard J Bloomer1,2* and Sang-Rok Lee1
Abstract

Background: Women have enhanced triglyceride (TAG) removal from the circulation following consumption of
high-fat loads, potentially leading to decreased reactive oxygen and nitrogen species (RONS) generation. This may
have implications related to long-term health outcomes. We examined the oxidative stress response to high-fat
feeding between men and women to determine if women are less prone to postprandial oxidative stress as
compared to men.

Methods: A total of 49 women (mean age: 31 ± 12 yrs) and 49 men (mean age: 27 ± 9 yrs) consumed a high-fat
meal in the morning hours following a 10–12 hour overnight fast. Blood samples were collected before and at 2
and 4 hours after the meal. Samples were analyzed for TAG, various markers of oxidative stress (malondialdehyde
[MDA], hydrogen peroxide [H2O2], Advanced Oxidation Protein Products [AOPP], nitrate/nitrite [NOx]), and Trolox-
Equivalent Antioxidant Capacity (TEAC). Area under the curve (AUC) was calculated for each variable. Effect size
calculations were performed using Cohen’s d. Data from the total sample of 98 subjects were collected as a part of
six previously conducted studies in our lab focused on postprandial oxidative stress, between 2007 and 2012.

Results: AUC was higher for men compared to women for TAG (249.0 ± 21.5 vs. 145.0 ± 9.8 mg·dL-1·4 hr-1;
p < 0.0001; effect size = 0.89), MDA (2.7 ± 0.2 vs. 2.2 ± 0.1 μmol·L-1·4 hr-1; p = 0.009; effect size = 0.47), H2O2

(29.9 ± 2.4 vs. 22.5 ± 1.6 μmol·L-1·4 hr-1; p = 0.001; effect size = 0.55), AOPP (92.8 ± 6.9 vs. 56.4 ± 3.7 μmol·L-1·4 hr-1;
p < 0.0001; effect size = 1.38), and TEAC (1.7 ± 0.1 vs. 1.3 ± 0.0 mmol·L-1·4 hr-1; p = 0.002; effect size = 0.91). No
significant difference was noted for NOx (42.2 ± 4.6 vs. 38.3 ± 3.5 μmol·L-1·4 hr-1 for men and women, respectively;
p = 0.09; effect size = 0.17).

Conclusion: In the context of the current design, women experienced lower postprandial oxidative stress
compared to men. Future work is needed to determine the potential health implications of lower postprandial
oxidative stress in women.
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Introduction
Oxidative stress can occur when the production of re-
active oxygen and nitrogen species (RONS) overwhelms
antioxidant defenses (Bloomer 2008). This scenario is
well-documented in human studies in which participants
ingest a high-fat load (Bell et al. 2010; Bloomer and
Fisher-Wellman 2009a; Bloomer and Fisher-Wellman.
2009b; Bloomer et al. 2010b; Melton et al. 2009; Yang
et al. 2008; Zhang et al. 2005). The increased oxidative
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stress is evidenced by the rise in oxidized molecules dur-
ing the several hour period (e.g., 2–6 hours) immediately
following consumption of the meal (Sies et al. 2005)—in-
cluding but not limited to oxidized glutathione, protein
carbonyls, advanced oxidation protein products (AOPP),
isoprostanes, malondialdehyde (MDA), hydrogen pero-
xide (H2O2), and nitrate/nitrite (NOx). A decrease in
selected markers of antioxidant status has also been ob-
served (McCarthy et al. 2013).
The oxidation of important cellular components has

been implicated in a variety of human diseases (Dalle-
Donne et al. 2006; Halliwell and Cross. 1994; Valko et al.
2007), in addition to the aging process (Pamplona and
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Barja 2011; Sena and Chandel 2012; Yin et al. 2012).
While the production of RONS occurs as part of normal
cellular metabolism (Fialkow et al. 2007; Stanczyk et al.
2005), in particular through the processing of NADH
and FADH2 in the electron transport chain, excess RONS
production can be problematic; in particular as related to
cardiovascular (Victor et al. 2009) and metabolic (Kojda
and Harrison 1999; Wei et al. 2009) disease.
One activity that appears ubiquitous in terms of in-

creasing oxidative stress is the ingestion of high-fat
meals (McCarthy et al. 2013). Considering that many in-
dividuals consume such meals on a regular basis, they
may exist in a prolonged postprandial state and place
themselves at increase risk for disease (Ceriello et al.
2002; Zilversmit 1979).
Two main factors appear to dictate the degree of oxi-

dative stress experienced following high-fat meal in-
gestion. First, the increase in circulating triglycerides
(TAG) triggers an increase in RONS formation (Bae
et al. 2001; Bloomer et al. 2010a)—with elevated TAG
strongly correlated to the rise in oxidized macromo-
lecules (Bloomer et al. 2010b; Fisher-Wellman and
Bloomer 2010; McCarthy et al. 2013). Second, impaired
antioxidant defenses lead to further elevation in oxidized
macromolecules (Bonnefont-Rousselot et al. 2000), as in-
sufficient protection is available in the presence of in-
creased RONS.
Considering the above, it is believed that women are

less susceptible to postprandial oxidative stress than
men due to exhibiting enhanced TAG removal from the
circulation following feeding, as well as having relatively
higher concentrations of estrogen (which provide anti-
oxidant protection). Indeed, women have been shown to
exhibit improved TAG clearance following high-fat
feeding as compared to men (Couillard et al. 1999), with
diminishing benefit following menopause (van Beek
et al. 1999)—strongly suggesting a role of estrogen in
mediating this effect. Estrogen also provides antioxidant
protection (Mendelsohn and Karas 1999), possibly re-
sulting in lower oxidative stress following an acute eleva-
tion in RONS. Mechanistically, estrogen binds estrogen
receptors and stimulates mitogen activated protein ki-
nase and NF-kB signaling pathways to induce an up-
regulation in endogenous antioxidants (Vina et al. 2006).
In support of this, it has been reported that mitochon-
dria from female rats exhibit higher antioxidant enzyme
gene expression compared to male rats, in addition to
higher mitochondrial glutathione (Borras et al. 2003).
For the above reasons, it is believed that women are

less susceptible to postprandial oxidative stress as com-
pared to men. This paper presents data relative to the
oxidative stress response between men and women du-
ring the four-hour period following the ingestion of a
high-fat meal.
Methods
Subjects
A total of 49 men and 49 women were included in this
study. Data from the total sample of 98 subjects were
collected as a part of six previously conducted studies in
our lab focused on postprandial oxidative stress, between
2007 and 2012. Subjects completed a health history and
physical activity questionnaire prior to being enrolled.
No subject was a current smoker or had a history of car-
diovascular or metabolic disease. Subjects were healthy
and young (mean age <30 years old), of usual body
weight (mean of 82 ± 8 kg for men; mean or 75 ± 21 kg
for women), with most subjects claiming (based on self
report) to participate in a program of structured exercise
(e.g., 2–4 days per week of aerobic exercise and/or re-
sistance exercise). All but three subjects (all men) pre-
sented with fasting serum TAG values <150 mg·dL-1. All
experimental procedures were approved by The University
Human Subjects Institutional Review Board. Subjects pro-
vided written informed consent prior to participating.

Test meals
Testing of all subjects was performed in the mor-
ning hours following an overnight fast (10–12 hours).
Subjects consumed a high-fat milkshake, consisting of
approximately 1.0 gram of fat (approximately 65% satu-
rated fat), 1.0 gram of carbohydrate, and 0.25 grams of
protein per kilogram of body weight. The dosage of fat
provided was similar to that used in other studies of
postprandial lipemia and supported by recent recom-
mendations for oral fat tolerance testing (Kolovou et al.
2011). The milkshake was made using whole milk,
Breyers® “all natural” vanilla ice cream, and heavy whip-
ping cream. Subjects were allowed 15 minutes for
complete ingestion. Subjects remained in the laboratory
(or in close proximity) during the four-hour postprandial
data collection period and rested (i.e., watched movies,
read, listened to music, worked on a computer, etc.). No
additional meals or calorie containing beverages were
allowed. Water was allowed ad libitum.

Blood collection and analysis
For all subjects at each time of collection (pre meal, 2
and 4 hours post meal) approximately 10 mL of blood
was taken from a forearm vein via needle and collection
tube. The four-hour sampling time is supported by re-
cent recommendations for the assessment of postpran-
dial lipemia (Mihas et al. 2011). Blood collected in tubes
containing EDTA was centrifuged immediately at 4°C
and plasma was stored in multiple aliquots at −70°C
until analyzed. Blood collected in tubes with no additive
was allowed to clot at room temperature for 30 minutes
and then centrifuged at 4°C. The serum was stored in
multiple aliquots at −70°C until analyzed.
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Triglyceride (TAG) was analyzed in serum following
enzymatic procedures as described by the reagent provi-
der (Thermo Electron Clinical Chemistry). Malondiade-
hyde (MDA) was analyzed in plasma using a commercially
available colorimetric assay (Northwest Life Science Spe-
cialties, Vancouver, WA), using similar methods as previ-
ously described (Jentzsch et al. 1996). It should be noted
that samples for MDA analysis were only available for 48
men. Hydrogen peroxide (H2O2) was analyzed in plasma
using the Amplex Red reagent method as described by the
manufacturer (Molecular Probes, Invitrogen Detection
Technologies, Eugene, OR). It should be noted that sam-
ples for H2O2 analysis were only available for 43 men and
48 women. Advanced Oxidation Protein Products (AOPP)
were analyzed in plasma using methods previously de-
scribed (Witko-Sarsat et al. 1996). It should be noted that
samples for AOPP analysis were only available for 24 men
and 19 women. Nitrate/nitrite (NOx) was analyzed using
a commercially available colorimetric assay kit (Cayman
Chemical, Ann Arbor, MI) according to the procedures
provided by the manufacturer. It should be noted that
samples for NOx analysis were only available for 30 men
and 33 women. Antioxidant capacity was analyzed using
the Trolox-Equivalent Antioxidant Capacity (TEAC) assay
using procedures outlined by Sigma Chemical (St. Louis,
MO). It should be noted that samples for TEAC analysis
were only available for 47 men and 48 women. As indi-
cated previously, biomarker values from subjects were
pooled from a series of individual studies of postprandial
oxidative stress as performed in our lab. Therefore, actual
values for each biomarker were not available for every
subject.
Dietary records and physical activity
All subjects were instructed to maintain their usual diet
and physical activity habits leading up to their test day,
with one exception: they were asked to refrain from
strenuous activity during the 24 hours prior to testing.
This was important in an attempt to control for any po-
tential acute effects of physical activity on postprandial
lipemia and oxidative stress (Mc Clean et al. 2007).
Statistical analysis
Area under the curve (AUC) was calculated for each
variable using the trapezoidal method (AUCG) as de-
scribed in detail by Pruessner and colleagues (Pruessner
et al. 2003). Variables were then analyzed using a one
way analysis of variance (ANOVA). Effect size calcula-
tions were performed using Cohen’s d. Data were also
analyzed using a 2 (sex) by 3 (time) ANOVA, with Tukey
post hoc testing as needed. Outcome data are presented
as mean ± standard error of the mean. Analyses were
performed using JMP statistical software (version 4.0.3,
SAS Institute, Cary, NC). Statistical significance was set
at p ≤ 0.05.

Results
Oxidative stress biomarker data: area under the curve
The AUC was higher for men compared to women for
TAG (249.0 ± 21.5 vs. 145.0 ± 9.8 mg·dL-1·4 hr-1; F = 20.6;
p < 0.0001; effect size = 0.89), MDA (2.7 ± 0.2 vs. 2.2 ±
0.1 μmol·L-1·4 hr-1; F = 7.6; p = 0.009; effect size = 0.47),
H2O2 (29.9 ± 2.4 vs. 22.5 ± 1.6 μmol·L-1·4 hr-1; F = 12.2;
p = 0.001; effect size = 0.55), AOPP (92.8 ± 6.9 vs. 56.4 ±
3.7 μmol·L-1·4 hr-1; F = 20.0; p < 0.0001; effect size =
1.38), and TEAC (1.7 ± 0.1 vs. 1.3 ± 0.0 mmol·L-1·4 hr-1;
F = 11.7; p = 0.002; effect size = 0.91). No significant
difference was noted for NOx (42.2 ± 4.6 vs. 38.3 ±
3.5 μmol·L-1·4 hr-1 for men and women, respectively;
F = 2.9; p = 0.09; effect size = 0.17). Effect size calcula-
tions were noted to be large for TAG, AOPP, and TEAC,
while being medium for MDA and H2O2. The effect size
calculation for NOx was noted to be small.

Oxidative stress biomarker data: sex by time ANOVA
For TAG, a sex effect was noted (F = 54.1; p < 0.0001),
with values higher for men compared to women. A time
effect was also noted (F = 8.1; p = 0.0005), with values
higher at 2 hr and 4 hr compared to Pre (baseline—prior
to meal ingestion). No interaction effect was noted
(F = 1.7; p = 0.19). Data for TAG are presented in Figure 1A.
For MDA, a sex effect was noted (F = 12.7; p = 0.0005),

with values higher for men compared to women. A time
effect was also noted (F = 20.3; p < 0.0001), with values
higher at 2 hr and 4 hr compared to Pre. No interaction
effect was noted (F = 1.0; p = 0.37). Data for MDA are
presented in Figure 1B.
For H2O2, a sex effect was noted (F = 20.2; p < 0.0001),

with values higher for men compared to women. A time
effect was also noted (F = 20.3; p < 0.0001), with values
higher at 2 hr and 4 hr compared to Pre. An interaction
effect was noted (F = 5.9; p = 0.004), with 2 hr lower for
women compared to men (p < 0.05). Data for H2O2 are
presented in Figure 2A.
For AOPP, a sex effect was noted (F = 34.7; p < 0.0001),

with values higher for men compared to women. A time
effect was also noted (F = 17.7; p < 0.0001), with values
higher at 2 hr and 4 hr compared to Pre. An interaction
effect was noted (F = 6.3; p = 0.003), with 2 hr and 4 hr
lower for women compared to men (p < 0.05). Data for
AOPP are presented in Figure 2B.
For NOx, no sex effect (F = 3.7; p = 0.06), time effect

(F = 0.1; p = 0.89), or interaction effect (F = 2.1; p = 0.12)
was noted. Data for NOx are presented in Figure 3A.
For TEAC, a sex effect was noted (F = 36.7; p < 0.0001),

with values higher for men compared to women. No time
effect (F = 0.5; p = 0.59) or interaction effect (F = 0.0;
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p = 0.99) was noted. Data for TEAC are presented in
Figure 3B.

Discussion
Data from the present investigation indicate that women
experience a lower oxidative stress response compared
to men, following ingestion of a high-fat meal. This
is evidenced by a significantly lower AUC for MDA,
H2O2, and AOPP. These data may have health and
longevity implications specific to oxidative stress-related
disease. Future study is needed to investigate this
possibility.
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As noted in our prior work (Bloomer et al. 2010b;
Fisher-Wellman and Bloomer. 2010; McCarthy et al.
2013), the rise in circulating TAG following meal inges-
tion appears to dictate the oxidative stress response. As
shown in Figure 1A, women experienced a blunted re-
sponse to feeding with regards to TAG—while also ha-
ving a lower pre-meal TAG value as compared to men
(although not statistically different). This lesser increase in



0

5

10

15

20

25

30

Pre 2hr 4hr

N
it

ra
te

/N
it

ri
te

 (
µ

m
o

l ˙
L-1

)

Men
Women

A

AUC: 42.2±4.6 µmol˙L
-1

˙4hr-1

AUC: 38.3±3.5 µmol˙L
-1

˙4hr-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pre 2hr 4hr

T
ro

lo
x 

E
q

u
iv

al
en

t 
A

n
ti

o
xi

d
an

t 
C

ap
ac

it
y 

(m
m

o
l ˙L-1

)

Men
Women

B

AUC: 1.7±0.1 mmol˙L
-1

˙4hr-1

AUC: 1.3±0.0 mmol˙L
-1

˙4hr-1

**

**

Figure 3 Plasma nitrate/nitrite (A) and Trolox Equivalent Antioxidant Capacity (B) before and following intake of a high-fat meal in
men and women. Values are mean ± SEM. Nitrate/Nitrite: No significant differences noted (p > 0.05). N = 30 men; N = 33 women. Trolox
Equivalent Antioxidant Capacity: **Significant difference noted for AUC (p = 0.002). **Significant effect for sex (p < 0.0001). N = 47 men;
N = 48 women.

Bloomer and Lee SpringerPlus 2013, 2:553 Page 6 of 8
http://www.springerplus.com/content/2/1/553
TAG was duplicated for MDA, H2O2, and AOPP—all of
which were significantly lower in women as compared with
men. Interestingly, NOx only rose slightly in men and
actually decreased slightly in women following feeding,
while TEAC decreased slightly in both men and women.
From a mechanistic perspective, although we are un-
certain as to exactly why women experienced a much
blunted oxidative stress response as compared to men,
we propose the following for consideration. First, a cor-
relation exists between the systemic TAG response to
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feeding and the increase in RONS production and subse-
quent oxidative stress biomarkers. In the present study
we noted a lower TAG response to feeding in women
compared to men. These findings agree with those of
Kolovou et al. (Kolovou et al. 2006) who observed grea-
ter postprandial TAG with delayed TAG clearance in
men compared to women. It is certainly conceivable that
a blunted postprandial TAG response to feeding amelio-
rates postprandial oxidative stress in women.
Another consideration is the ability of estrogen to

provide antioxidant protection in women. Sugioka and
colleagues (Sugioka et al. 1987) reported that estrogen
administration reduced lipid peroxidation, possibly by
providing hydrogen atoms to lipids within cell mem-
branes, thus accelerating termination of radical reac-
tions. Moreover, Shwaery et al. (Shwaery et al. 1997)
found that 17β-estradiol administration antagonized oxi-
dative modification of low density lipoprotein. The higher
mean concentrations of estrogen in women may be partly
responsible for the lower postprandial oxidative stress res-
ponse in women compared to men.
Related to the above, it should be noted that we made

no attempt to control for menstrual cycle phase in the
present study. It is logical to hypothesize that since es-
trogen fluctuates considerably across the cycle, our goal
should have been to test women when estrogen levels
are highest (i.e., pre-ovulation). However, we have previ-
ously conducted a study in which we tested women at
different times during the menstrual cycle to determine
the direct influence of estrogen on postprandial lipemia
and oxidative stress, noting no differences in outcome
measures regardless of when women were tested (Bell
et al. 2010). Rather than estrogen concentration at the
actual time of testing, what may be of greatest impor-
tance is the chronically higher mean levels of estrogen
across the entire menstrual cycle that may prevent
oxidative damage and may serve as a signal for the
up-regulation in endogenous antioxidant defense mecha-
nisms, which then remains present throughout the entire
cycle. Of course, well-controlled experiments are needed
to confirm this hypothesis. Our failure to measure estro-
gen concentrations in our subjects may be considered a
limitation of this work.
A consideration in interpreting our findings is the de-

gree of adiposity of our subjects, as this has been noted
in prior studies to influence outcome measures related
to postprandial oxidative stress (Bloomer and Fisher-
Wellman 2009a). Unfortunately, we did not have de-
tailed information related to adiposity based on DXA or
CT scans. Future studies may aim to include these mea-
sures when comparing the postprandial oxidative stress
response between men and women. That said, it should
be noted that in our prior work with men and women,
whom were relatively lean, we also noted a blunted
postprandial oxidative stress response in women as com-
pared to men (Bloomer et al. 2009).
We aimed to include a wide variety of oxidative stress

biomarkers in the present analysis—those that are used
widely throughout the feeding and oxidative stress li-
terature. That said, our presentation may have been
strengthened by the inclusion of further markers such
as glutathione and isoprostanes, as well as enzymatic
antioxidants. Additionally, although we measured bio-
markers in blood samples, we are uncertain of the
potential differences observed in other tissue such as
skeletal muscle and liver. Future study using animal
models may allow for an assessment in other tissues.
Finally, we ceased our measurement time at four hours
post meal ingestion. Although our timing is well-
supported (Mihas et al. 2011), values for certain variables
were shown to be highest at this time. Therefore, it is pos-
sible that values may have continued to increase beyond
four hours, potentially altering the differences observed
between men and women. Future study may seek to
extend the time of collection following high-fat meal
ingestion.

Conclusion
We report that women are less susceptible to postpran-
dial oxidative stress compared to men, following inges-
tion of a high-fat milkshake. It is possible that lower
oxidative stress may be one mechanistic link to lower
disease risk and increased longevity in women compared
to men (Vina et al. 2006). Future work is needed to con-
firm this hypothesis.
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