483 research outputs found

    Time-Minimal Control of Dissipative Two-level Quantum Systems: the Generic Case

    Full text link
    The objective of this article is to complete preliminary results concerning the time-minimal control of dissipative two-level quantum systems whose dynamics is governed by Lindblad equations. The extremal system is described by a 3D-Hamiltonian depending upon three parameters. We combine geometric techniques with numerical simulations to deduce the optimal solutions.Comment: 24 pages, 16 figures. submitted to IEEE transactions on automatic contro

    Time minimal control of batch reactors

    Get PDF
    Abstract In this article we consider a control system modelling a batch reactor in which three species X

    Energy minimization problem in two-level dissipative quantum control: meridian case

    Get PDF
    International audienceWe analyze the energy-minimizing problem for a two-level dissipative quantum system described by the Kossakowsky-Lindblad equation. According to the Pontryagin Maximum Principle (PMP), minimizers can be selected among normal and abnormal extremals whose dynamics are classified according to the values of the dissipation parameters. Our aim is to improve our previous analysis concerning 2D solutions in the case where the Hamiltonian dynamics are integrable

    Time minimal control of batch reactors

    Full text link

    Quantum Multiobservable Control

    Full text link
    We present deterministic algorithms for the simultaneous control of an arbitrary number of quantum observables. Unlike optimal control approaches based on cost function optimization, quantum multiobservable tracking control (MOTC) is capable of tracking predetermined homotopic trajectories to target expectation values in the space of multiobservables. The convergence of these algorithms is facilitated by the favorable critical topology of quantum control landscapes. Fundamental properties of quantum multiobservable control landscapes that underlie the efficiency of MOTC, including the multiobservable controllability Gramian, are introduced. The effects of multiple control objectives on the structure and complexity of optimal fields are examined. With minor modifications, the techniques described herein can be applied to general quantum multiobjective control problems.Comment: To appear in Physical Review

    Care of newly purchased feeder cattle

    Get PDF
    "The way cattle are handled shortly before loading, during hauling and the first two weeks in the feedlot has a great influence on the overall performance of feedlot cattle. There is no one program that will give best results for all feeder cattle, nor will the same results occur each year. "Cattle sense" is developed by close observation and experience. Keep records on each bunch of cattle. These records will be useful in helping you provide the most practical and economical program for the next group of incoming cattle. Develop a program which fits your operation and area. Post mortem examinations are worthwhile in ascertaining problems and the results should be considered for future health and management programs. The following are general guidelines which should be helpful to you in deciding how to handle newly purchased feeder cattle."--First page.Bonnard L. Moseley, DVM, (School of Veterinary Medicine) and Homer B. Sewell (Department of Animal Science College of Agriculture)Revised 5/90/5

    Time-optimal Unitary Operations in Ising Chains II: Unequal Couplings and Fixed Fidelity

    Full text link
    We analytically determine the minimal time and the optimal control laws required for the realization, up to an assigned fidelity and with a fixed energy available, of entangling quantum gates (CNOT\mathrm{CNOT}) between indirectly coupled qubits of a trilinear Ising chain. The control is coherent and open loop, and it is represented by a local and continuous magnetic field acting on the intermediate qubit. The time cost of this local quantum operation is not restricted to be zero. When the matching with the target gate is perfect (fidelity equal to one) we provide exact solutions for the case of equal Ising coupling. For the more general case when some error is tolerated (fidelity smaller than one) we give perturbative solutions for unequal couplings. Comparison with previous numerical solutions for the minimal time to generate the same gates with the same Ising Hamiltonian but with instantaneous local controls shows that the latter are not time-optimal.Comment: 11 pages, no figure
    • …
    corecore