We analytically determine the minimal time and the optimal control laws
required for the realization, up to an assigned fidelity and with a fixed
energy available, of entangling quantum gates (CNOT) between
indirectly coupled qubits of a trilinear Ising chain. The control is coherent
and open loop, and it is represented by a local and continuous magnetic field
acting on the intermediate qubit. The time cost of this local quantum operation
is not restricted to be zero. When the matching with the target gate is perfect
(fidelity equal to one) we provide exact solutions for the case of equal Ising
coupling. For the more general case when some error is tolerated (fidelity
smaller than one) we give perturbative solutions for unequal couplings.
Comparison with previous numerical solutions for the minimal time to generate
the same gates with the same Ising Hamiltonian but with instantaneous local
controls shows that the latter are not time-optimal.Comment: 11 pages, no figure