321 research outputs found

    Role of telavancin in treatment of skin and skin structure infections

    Get PDF
    Skin and skin structure infections (SSSIs) are a common diagnosis encountered by ambulatory and inpatient practitioners across the country. As the SSSIs become more complicated, they require increased health care resources and often involve hospitalization and intravenous antimicrobials. Complicated SSSIs are caused by a variety of pathogens, including Gram-positive, Gram-negative, and anerobic bacteria. Empiric broad-spectrum antibiotic coverage is warranted, taking into account area disease-state epidemiology and antimicrobial susceptibility data. Telavancin is an antimicrobial agent with a broad Gram-positive spectrum of activity which was recently approved for the treatment of SSSIs. It may especially benefit patients with resistant organisms, such as methicillin-resistant Staphylococcus aureus. This article reviews telavancin and its pharmacology, efficacy, and safety data to enhance the practitioner’s knowledge base on the appropriateness of telavancin for the treatment of SSSIs

    Root cap is an important determinant of rhizosphere microbiome assembly

    Get PDF
    Plants impact the development of their rhizosphere microbial communities. It is yet unclear to what extent the root cap and specific root zones contribute to microbial community assembly. To test the roles of root caps and root hairs in the establishment of microbiomes along maize roots (Zea mays), we compared the composition of prokaryote (archaea and bacteria) and protist (Cercozoa and Endomyxa) microbiomes of intact or decapped primary roots of maize inbred line B73 with its isogenic root hairless (rth3) mutant. In addition, we tracked gene expression along the root axis to identify molecular control points for an active microbiome assembly by roots. Absence of root caps had stronger effects on microbiome composition than the absence of root hairs and affected microbial community composition also at older root zones and at higher trophic levels (protists). Specific bacterial and cercozoan taxa correlated with root genes involved in immune response. Our results indicate a central role of root caps in microbiome assembly with ripple-on effects affecting higher trophic levels and microbiome composition on older root zones

    The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots

    Get PDF
    Despite often being conceptualized as a thin layer of soil around roots, the rhizosphere is actually a dynamic system of interacting processes. Hiltner originally defined the rhizosphere as the soil influenced by plant roots. However, soil physicists, chemists, microbiologists, and plant physiologists have studied the rhizosphere independently, and therefore conceptualized the rhizosphere in different ways and using contrasting terminology. Rather than research-specific conceptions of the rhizosphere, the authors propose a holistic rhizosphere encapsulating the following components: microbial community gradients, macroorganisms, mucigel, volumes of soil structure modification, and depletion or accumulation zones of nutrients, water, root exudates, volatiles, and gases. These rhizosphere components are the result of dynamic processes and understanding the integration of these processes will be necessary for future contributions to rhizosphere science based upon interdisciplinary collaborations. In this review, current knowledge of the rhizosphere is synthesized using this holistic perspective with a focus on integrating traditionally separated rhizosphere studies. The temporal dynamics of rhizosphere activities will also be considered, from annual fine root turnover to diurnal fluctuations of water and nutrient uptake. The latest empirical and computational methods are discussed in the context of rhizosphere integration. Clarification of rhizosphere semantics, a holistic model of the rhizosphere, examples of integration of rhizosphere studies across disciplines, and review of the latest rhizosphere methods will empower rhizosphere scientists from different disciplines to engage in the interdisciplinary collaborations needed to break new ground in truly understanding the rhizosphere and to apply this knowledge for practical guidance

    Pseudomonas fluorescens CHA0 maintains carbon delivery to Fusarium graminearum-infected roots and prevents reduction in biomass of barley shoots through systemic interactions

    Get PDF
    Soil bacteria such as pseudomonads may reduce pathogen pressure for plants, both by activating plant defence mechanisms and by inhibiting pathogens directly due to the production of antibiotics. These effects are hard to distinguish under field conditions, impairing estimations of their relative contributions to plant health. A split-root system was set up with barley to quantify systemic and local effects of pre-inoculation with Pseudomonas fluorescens on the subsequent infection process by the fungal pathogen Fusarium graminearum. One root half was inoculated with F. graminearum in combination with P. fluorescens strain CHA0 or its isogenic antibiotic-deficient mutant CHA19. Bacteria were inoculated either together with the fungal pathogen or in separate halves of the root system to separate local and systemic effects. The short-term plant response to fungal infection was followed by using the short-lived isotopic tracer 11CO2 to track the delivery of recent photoassimilates to each root half. In the absence of bacteria, fungal infection diverted carbon from the shoot to healthy roots, rather than to infected roots, although the overall partitioning from the shoot to the entire root system was not modified. Both local and systemic pre-inoculation with P. fluorescens CHA0 prevented the diversion of carbon as well as preventing a reduction in plant biomass in response to F. graminearum infection, whereas the non-antibiotic-producing mutant CHA19 lacked this ability. The results suggest that the activation of plant defences is a central feature of biocontrol bacteria which may even surpass the effects of direct pathogen inhibition

    How to adequately represent biological processes in modeling multifunctionality of arable soils

    Get PDF
    Essential soil functions such as plant productivity, C storage, nutrient cycling and the storage and purification of water all depend on soil biological processes. Given this insight, it is remarkable that in modeling of these soil functions, the various biological actors usually do not play an explicit role. In this review and perspective paper we analyze the state of the art in modeling these soil functions and how biological processes could more adequately be accounted for. We do this for six different biologically driven processes clusters that are key for understanding soil functions, namely i) turnover of soil organic matter, ii) N cycling, iii) P dynamics, iv) biodegradation of contaminants v) plant disease control and vi) soil structure formation. A major conclusion is that the development of models to predict changes in soil functions at the scale of soil profiles (i.e. pedons) should be better rooted in the underlying biological processes that are known to a large extent. This is prerequisite to arrive at the predictive models that we urgently need under current conditions of Global Change

    Responses of rice paddy micro-food webs to elevated CO<sub>2</sub> are modulated by nitrogen fertilization and crop cultivars

    Get PDF
    Elevated atmospheric CO2 concentrations (eCO(2)) often increase plant growth but simultaneously lead to the nitrogen (N) limitation in soil. The corresponding mitigation strategy such as supplementing N fertilizer and growing high-yielding cultivars at eCO(2) would further modify soil ecosystem structure and function. Little attention has, however, been directed toward assessing the responses of soil food web. We report results from a long-term free air CO2 enrichment (FACE) experiment in a rice paddy agro-ecosystem that examined the responses of soil micro-food webs to eCO(2) and exogenous nitrogen fertilization (eN) in the rhizosphere of two rice cultivars with distinctly weak and strong responses to eCO(2). Soil micro-food web parameters, including microfauna (protists and nematodes) and soil microbes (bacteria and fungi from phospholipid fatty acid (PLFA) analysis), as well as soil C and N variables, were determined at the heading and ripening stages of rice. Results showed that eCO(2) effects on soil micro food webs depended strongly on N fertilization, rice cultivar and growth stage. eCO(2) stimulated the fungal energy channel at the ripening stage, as evidenced by increases in fungal biomass (32%), fungi:bacteria ratio (18%) and the abundance of fungivorous nematodes (64%), mainly due to an enhanced carbon input. The eN fueled the bacterial energy channel by increasing the abundance of flagellates and bacterivorous nematodes, likely through alleviating the N-limitation of plants and rhizosphere under eCO(2). While eCO(2) decreased the abundance of herbivorous nematodes under the weak-responsive cultivar by 59% and 47% with eN at the heading and ripening stage, respectively, the numbers of herbivorous nematodes almost tripled (x2.9; heading) and doubled (x1.6; ripening) under the strong responsive cultivar with eCO(2) at eN due to higher root quantity and quality. Structural equation model (SEM) showed that lower trophic-level organisms were affected by bottom-up forces of altered soil resources induced by eCO(2) and eN, and effects on higher trophic level organisms were driven by bottom up cascades with 69% of the variation being explained. Taken together, strategies to adapt climate change by growing high-yielding crop cultivars under eCO(2) may face a trade-off by negative soil feedbacks through the accumulation of root-feeding crop pest species. (C) 2017 Elsevier Ltd. All rights reserved

    Disruption of Growth Hormone Receptor Prevents Calorie Restriction from Improving Insulin Action and Longevity

    Get PDF
    Most mutations that delay aging and prolong lifespan in the mouse are related to somatotropic and/or insulin signaling. Calorie restriction (CR) is the only intervention that reliably increases mouse longevity. There is considerable phenotypic overlap between long-lived mutant mice and normal mice on chronic CR. Therefore, we investigated the interactive effects of CR and targeted disruption or knock out of the growth hormone receptor (GHRKO) in mice on longevity and the insulin signaling cascade. Every other day feeding corresponds to a mild (i.e. 15%) CR which increased median lifespan in normal mice but not in GHRKO mice corroborating our previous findings on the effects of moderate (30%) CR on the longevity of these animals. To determine why insulin sensitivity improves in normal but not GHRKO mice in response to 30% CR, we conducted insulin stimulation experiments after one year of CR. In normal mice, CR increased the insulin stimulated activation of the insulin signaling cascade (IR/IRS/PI3K/AKT) in liver and muscle. Livers of GHRKO mice responded to insulin by increased activation of the early steps of insulin signaling, which was dissipated by altered PI3K subunit abundance which putatively inhibited AKT activation. In the muscle of GHRKO mice, there was elevated downstream activation of the insulin signaling cascade (IRS/PI3K/AKT) in the absence of elevated IR activation. Further, we found a major reduction of inhibitory Ser phosphorylation of IRS-1 seen exclusively in GHRKO muscle which may underpin their elevated insulin sensitivity. Chronic CR failed to further modify the alterations in insulin signaling in GHRKO mice as compared to normal mice, likely explaining or contributing to the absence of CR effects on insulin sensitivity and longevity in these long-lived mice

    Carbon budgets of top- and subsoil food webs in an arable system

    Get PDF
    © 2018 This study assessed the carbon (C) budget and the C stocks in major compartments of the soil food web (bacteria, fungi, protists, nematodes, meso- and macrofauna) in an arable field with/without litter addition. The C stocks in the food web were more than three times higher in topsoil (0–10 cm) compared to subsoil (>40 cm). Microorganisms contained over 95% of food web C, with similar contributions of bacteria and fungi in topsoil. Litter addition did not alter C pools of soil biota after one growing season, except for the increase of fungi and fungal feeding nematodes in the topsoil. However, the C budget for functional groups changed with depth, particularly in the microfauna. This suggests food web resilience to litter amendment in terms of C pool sizes after one growing season. In contrast, the distinct depth dependent pattern indicates specific metacommunities, likely shaped by dominant abiotic and biotic habitat properties

    Earthworms Use Odor Cues to Locate and Feed on Microorganisms in Soil

    Get PDF
    Earthworms are key components of temperate soil ecosystems but key aspects of their ecology remain unexamined. Here we elucidate the role of olfactory cues in earthworm attraction to food sources and document specific chemical cues that attract Eisenia fetida to the soil fungi Geotrichum candidum. Fungi and other microorganisms are major sources of volatile emissions in soil ecosystems as well as primary food sources for earthworms, suggesting the likelihood that earthworms might profitably use olfactory cues to guide foraging behavior. Moreover, previous studies have documented earthworm movement toward microbial food sources. But, the specific olfactory cues responsible for earthworm attraction have not previously been identified. Using olfactometer assays combined with chemical analyses (GC-MS), we documented the attraction of E. fetida individuals to filtrate derived from G. candidum colonies and to two individual compounds tested in isolation: ethyl pentanoate and ethyl hexanoate. Attraction at a distance was observed when barriers prevented the worms from reaching the target stimuli, confirming the role of volatile cues. These findings enhance our understanding of the mechanisms underlying key trophic interactions in soil ecosystems and have potential implications for the extraction and collection of earthworms in vermiculture and other applied activities
    corecore