681 research outputs found

    Association between bacterial homoplastic variants and radiological pathology in tuberculosis.

    Get PDF
    Funder: Biotechnology and Biological Sciences Research Council; FundRef: http://dx.doi.org/10.13039/501100000268Funder: FP7 People: Marie-Curie Actions; FundRef: http://dx.doi.org/10.13039/100011264; Grant(s): EU FP7-PEOPLE-2013-IRSES - Marie Curie Action DEANBACKGROUND: Understanding how pathogen genetic factors contribute to pathology in TB could enable tailored treatments to the most pathogenic and infectious strains. New strategies are needed to control drug-resistant TB, which requires longer and costlier treatment. We hypothesised that the severity of radiological pathology on the chest radiograph in TB disease was associated with variants arising independently, multiple times (homoplasies) in the Mycobacterium tuberculosis genome. METHODS: We performed whole genome sequencing (Illumina HiSeq2000 platform) on M. tuberculosis isolates from 103 patients with drug-resistant TB in Lima between 2010 and 2013. Variables including age, sex, HIV status, previous TB disease and the percentage of lung involvement on the pretreatment chest radiograph were collected from health posts of the national TB programme. Genomic variants were identified using standard pipelines. RESULTS: Two mutations were significantly associated with more widespread radiological pathology in a multivariable regression model controlling for confounding variables (Rv2828c.141, RR 1.3, 95% CI 1.21 to 1.39, p<0.01; rpoC.1040 95% CI 1.77 to 2.16, RR 1.9, p<0.01). The rpoB.450 mutation was associated with less extensive radiological pathology (RR 0.81, 95% CI 0.69 to 0.94, p=0.03), suggestive of a bacterial fitness cost for this mutation in vivo. Patients with a previous episode of TB disease and those between 10 and 30 years of age also had significantly increased radiological pathology. CONCLUSIONS: This study is the first to compare the M. tuberculosis genome to radiological pathology on the chest radiograph. We identified two variants significantly positively associated with more widespread radiological pathology and one with reduced pathology. Prospective studies are warranted to determine whether mutations associated with increased pathology also predict the spread of drug-resistant TB

    Direct and indirect control of the initiation of meiotic recombination by DNA damage checkpoint mechanisms in budding yeast

    Get PDF
    Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs). The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM) pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR) pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI) whereas no significant reduction was found in smaller chromosomes (III and VI). On the other hand, the absence of Rad17 (a critical component of the ATR pathway) lead to an increase in DSB formation (chromosomes VII and II were tested). We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation

    Digital Avatars for Older People’s Care

    Get PDF
    Es el preprint de: Bertoa M.F., Moreno N., Perez-Vereda A., Bandera D., Álvarez-Palomo J.M., Canal C. (2020) Digital Avatars for Older People’s Care. In: García-Alonso J., Fonseca C. (eds) Gerontechnology. IWoG 2019. Communications in Computer and Information Science, vol 1185. Springer, Cham. doi:10.1007/978-3-030-41494-8_6.The continuous increase in life expectancy poses a challenge for health systems in modern societies, especially with respect to older people living in rural low-populated areas, both in terms of isolation and difficulty to access and communicate with health services. In this paper, we address these issues by applying the Digital Avatars framework to Gerontechnology. Building on our previous work on mobile and social computing, in particular the People as a Service model, Digital Avatars make intensive use of the capabilities of current smartphones to collect information about their owners, and applies techniques of Complex Event Processing extended with uncertainty for inferring the habits and preferences of the user of the phone and building with them a virtual profile. These virtual profiles allow to monitor the well-being and quality of life of older adults, reminding pharmacological treatments and home health testings, and raising alerts when an anomalous situation is detected.This work has been funded by the Spanish Government under grant PGC2018-094905-B-100

    Skin Cornification Proteins Provide Global Link between ROS Detoxification and Cell Migration during Wound Healing

    Get PDF
    Wound healing is a complex dynamic process characterised by a uniform flow of events in nearly all types of tissue damage, from a small skin scratch to myocardial infarction. Reactive oxygen species (ROS) are essential during the healing process at multiple stages, ranging from the initial signal that instigates the immune response, to the triggering of intracellular redox-dependent signalling pathways and the defence against invading bacteria. Excessive ROS in the wound milieu nevertheless impedes new tissue formation. Here we identify small proline-rich (SPRR) proteins as essential players in this latter process, as they directly link ROS detoxification with cell migration. A literature-based meta-analysis revealed their up-regulation in various forms of tissue injury, ranging from heart infarction and commensal-induced gut responses to nerve regeneration and burn injury. Apparently, SPRR proteins have a far more widespread role in wound healing and tissue remodelling than their established function in skin cornification. It is inferred that SPRR proteins provide injured tissue with an efficient, finely tuneable antioxidant barrier specifically adapted to the tissue involved and the damage inflicted. Their recognition as novel cell protective proteins combining ROS detoxification with cell migration will provide new venues to study and manage tissue repair and wound healing at a molecular level

    Genomic signatures of pre-resistance in Mycobacterium tuberculosis.

    Get PDF
    Recent advances in bacterial whole-genome sequencing have resulted in a comprehensive catalog of antibiotic resistance genomic signatures in Mycobacterium tuberculosis. With a view to pre-empt the emergence of resistance, we hypothesized that pre-existing polymorphisms in susceptible genotypes (pre-resistance mutations) could increase the risk of becoming resistant in the future. We sequenced whole genomes from 3135 isolates sampled over a 17-year period. After reconstructing ancestral genomes on time-calibrated phylogenetic trees, we developed and applied a genome-wide survival analysis to determine the hazard of resistance acquisition. We demonstrate that M. tuberculosis lineage 2 has a higher risk of acquiring resistance than lineage 4, and estimate a higher hazard of rifampicin resistance evolution following isoniazid mono-resistance. Furthermore, we describe loci and genomic polymorphisms associated with a higher risk of resistance acquisition. Identifying markers of future antibiotic resistance could enable targeted therapy to prevent resistance emergence in M. tuberculosis and other pathogens

    Mapping the Hsp90 Genetic Interaction Network in Candida albicans Reveals Environmental Contingency and Rewired Circuitry

    Get PDF
    The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with ∼10% of the proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in Candida albicans, the leading fungal pathogen of humans. Utilizing a chemical genomic approach, we mapped the C. albicans Hsp90 interaction network under diverse stress conditions. The chaperone network is environmentally contingent, and most of the 226 genetic interactors are important for growth only under specific conditions, suggesting that they operate downstream of Hsp90, as with the MAPK Hog1. Few interactors are important for growth in many environments, and these are poised to operate upstream of Hsp90, as with the protein kinase CK2 and the transcription factor Ahr1. We establish environmental contingency in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90, and network rewiring over evolutionary time

    Enhancing the sustainability performance of Agri-Food Supply Chains by implementing Industry 4.0

    Full text link
    [EN] In order to enhance the sustainability in the supply chain, its members should define and pursue common objectives in the three dimensions of the sustainability (economic, environmental and social). The Agri-Food Supply Chain (AFSC) is a network of different members such as farmers (producers), processors and distributors (wholesales, retailers.), etc.. In order to achieve the performance objectives of the AFSC, Industry 4.0 technologies can be implemented. The aim of this paper is to present a classification of these technologies according to two criteria: objective to be achieved (environmental or social) specified in the main issues to be covered in each objective and member of the AFSC supply chain where it is implemented. In this work, we focus on technologies that deal with environmental and social sustainability because economic sustainability will depend on the specific characteristics of the business (a supply chain using a specific Industry 4.0 technology may be profitable while others do not).This work has been funded by the Project GV/2017/065 "Development of a decision support tool for the management and improvement of sustainability in supply chains" funded by the Regional Government of Valencia. Authors also acknowledge the Project 691249, RUC-APS: Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems.Pérez Perales, D.; Verdecho Sáez, MJ.; Alarcón Valero, F. (2019). Enhancing the sustainability performance of Agri-Food Supply Chains by implementing Industry 4.0. IFIP Advances in Information and Communication Technology. 568:496-503. https://doi.org/10.1007/978-3-030-28464-0_43S496503568Camarinha-Matos, L.M., Fornasiero, R., Afsarmanesh, H.: Collaborative networks as a core enabler of Industry 4.0. In: Camarinha-Matos, L.M., Afsarmanesh, H., Fornasiero, R. (eds.) PRO-VE 2017. IAICT, vol. 506, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65151-4_1Stich, V., Gudergan, G., Zeller, V.: Need and solution to transform the manufacturing industry in the age of Industry 4.0 – a capability maturity index approach. In: Camarinha-Matos, L.M., Afsarmanesh, H., Rezgui, Y. (eds.) PRO-VE 2018. IAICT, vol. 534, pp. 33–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99127-6_3Flores, M., Maklin, D., Golob, M., Al-Ashaab, A., Tucci, C.: Awareness towards Industry 4.0: key enablers and applications for internet of things and big data. In: Camarinha-Matos, L.M., Afsarmanesh, H., Rezgui, Y. (eds.) PRO-VE 2018. IAICT, vol. 534, pp. 377–386. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99127-6_32Seuring, S., Müller, M.: From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 16, 1699–1710 (2008)Prima, W.A., Xing, K., Amer, Y.: Collaboration and sustainable agri-food supply chain: a literature review. In: MATEC (2016). https://doi.org/10.1051/matecconf/20165802004Pérez Perales, D., Alarcón Valero, F., Drummond, C., Ortiz, Á.: Towards a sustainable agri-food supply chain model. The case of LEAF. In: Ortiz, Á., Andrés Romano, C., Poler, R., García-Sabater, J.-P. (eds.) Engineering Digital Transformation. LNMIE, pp. 333–341. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96005-0_40Savastano, M., Amendola, C., Bellini, F., D’Ascenzo, F.: Contextual impacts on industrial processes brought by the digital transformation of manufacturing: a systematic review. Sustainability 11, 891 (2019)Varela, L., Araújo, A., Ávila, P., Castro, H., Putnik, G.: Evaluation of the relation between lean manufacturing, Industry 4.0, and sustainability. Sustainability 11, 1439 (2019)Bonilla, S.H., Silva, H.R.O., da Silva, M.T., Gonçalves, R.F., Sacomano, J.B.: Industry 4.0 and sustainability implications: a scenario-based analysis of the impacts and challenges. Sustainability 10, 3740 (2018)Bányai, T., Tamás, P., Illés, B., Stankeviciute, Z., Bányai, A.: Optimization of municipal waste collection routing: impact of Industry 4.0 technologies on environmental awareness and sustainability. Int. J. Environ. Res. Public Health. 16, 634 (2019)Lin, K.C., Shyu, J.Z., Ding, K.: A cross-strait comparison of innovation policy under Industry 4.0 and sustainability development transition. Sustainability 9, 786 (2017)Kamble, S.: Sustainable Industry 4.0 framework: a systematic literature review identifying the current trends and future perspectives. In: Process Safety and Environmental Protection Transactions of the Institution of Chemical Engineers, Part B, vol. 117, pp. 408–25. Institution of Chemical Engineers (2018)Franciosi, C., Iung, B., Miranda, S., Riemma, S.: Maintenance for sustainability in the Industry 4.0 context: a scoping literature review. IFAC-Pap. Online 51(11), 903–908 (2018)Bocken, N.M.P., Short, S.W., Rana, P., Evans, S.: A literature and practice review to develop sustainable business model archetypes. J. Clean. Prod. 65, 42–56 (2014)Bourlakis, M., Maglaras, G., Aktas, E., Gallear, D., Fotopoulos, C.: Firm size and sustainable performance in food supply chains: insights from Greek SMEs. Int. J. Prod. Econ. 152, 112–130 (2014)Garbie, I.H.: An analytical technique to model and assess sustainable development index in manufacturing enterprises. Int. J. Prod. Res. 52(16), 4876–4915 (2014)Beier, G., Niehoff, S., Ziems, T., Xue, B.: Sustainability aspects of a digitalized industry - a comparative study from China and Germany. Int. J. Precis. Eng. Manuf. Green Technol. 4, 227–234 (2017)Pérez, D., Verdecho, M.J., Alarcón, F: Industry 4.0 for the development of more sustainable decision support tools for agri-food supply chain management. In: 13rd International Conference on Industrial Engineering and Industrial Management, XXIII, Gijón, Spain (2019)Xiaolin, L., Linnan, Y., Lin, P., Wengfeng, L., Limin, Z.: Procedia engineering county soil fertility information management system based on embedded GIS. Procedia Eng. 29, 2388–2392 (2012)Satyanarayana, G.V.: Wireless sensor based remote monitoring system for agriculture using ZigBee and GPS. In: 2013 (CAC2S), pp. 110–114 (2013)Phillips, A.J., Newlands, N.K., Liang, S.H.L., Ellert, B.H.: Integrated sensing of soil moisture at the field-scale: measuring, modeling and sharing for improved agricultural decision support. Comput. Electron. Agric. 107, 73–88 (2014)Liopa-tsakalidi, A., Tsolis, D., Barouchas, P.: Application of mobile technologies through an integrated management system for agricultural production. Procedia Technol. 8, 165–170 (2013). (Haicta)Yerpude, S., Singhal, T.K.: Impact of Internet of Things (IoT) data on demand forecasting. Indian J. Sci. Technol. 10, 5 (2017)Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.: Big data in smart farming – a review. Agric. Syst. 153, 69–80 (2017)Castka, P., Balzarova, M.A.: ISO 26000 and supply chains-on the diffusion of the social responsibility standard. Int. J. Prod. Econ. 111(2), 274–286 (2008)Stock, T., Obenaus, M., Kunz, S., Kohl, H.: Industry 4.0 as enabler for a sustainable development: A qualitative assessment of its ecological and social potential. Process. Saf. Environ. 118, 254–267 (2018)Verdecho, M.J., Pérez, D., Alarcón F.: Proposal of a customer-oriented sustainable balanced scorecard for agri-food supply chains. In: 12th International Conference on Industrial Engineering and Industrial Management, Girona, Spain, 12–13 July (2018)Valcour, P.M., Hunter, L.W.: Technology, organizations, and work-life integration. In: Kossek, E.E. Lambert, S.J. (eds.), Work and Life Integration: Organizational, Cultural, and Individual Perspectives, pp. 61–84. Lawrence Erlbaum Associates, Mahwah (2005)Arntz, M., Gregory, T., Zierahn, U.: The risk of automation for jobs in OECD countries: a comparative analysis. In: OECD Social, Employment and Migration Working Papers, no. 189. OECD Publishing, Paris (2016)Grubert, J., Langlotz, T., Zollmann, S., Regenbrecht, H.: Towards pervasive augmented reality: context-awareness in augmented reality. IEEE Trans. Vis. Comput. Graph. 23, 1 (2016)Velthuis, A.G.J.: New Approaches to Food-Safety Economics. Kluwer Academic Publishers, Dordrecht (2003)Sándor, Z.P., Csiszár, C.: Development stages of intelligent parking information systems for trucks. Acta Polytechnica Hungarica 10(4), 161–174 (2013)Scognamiglio, V., Arduini, F., Palleschi, G., Rea, G.: Biosensing technology for sustainable food safety. Trends Analyt. Chem. 62, 1–10 (2014)Brynjolfsson, E., McAfee, A.: The Second Machine Age. Work, Progress, and Prosperity in a Time of Brilliant Technologies. W.W. Norton & Company, London (2014)Smith, A., Caiazza, T.: Automation in everyday life (2017). http://assets.pewresearch.org/wpcontent/uploads/sites/14/2017/10/03151500/PI_2017.10.04_Automation_FINAL.pdfHefferon, K.L.: Nutritionally enhanced food crops; progress and perspectives. Int. J. Mol. Sci. 16, 3895–3914 (2015)Glass, S., Fanzo, J.: Genetic modification technology for nutrition and improving diets: an ethical perspective. Curr. Opin. Biotech. 44, 46–51 (2017)Moe, T.: Perspectives on traceability in food manufacture’. Trends Food Sci. Technol. 9(5), 211–214 (1998)Latino, M., Corallo, A., Menegoli, M.: From Industry 4.0 to Agriculture 4.0: how manage product data in agri-food supply chain for voluntary traceability, a framework proposed. In: 20th International Conference on Food and Environment (ICFE), Rome (2018)Linus, U.O.: Traceability in agriculture and food supply chain: a review of basic concepts, technological implications, and future prospects. J. Food Agric. Environ. 1(1), 101–106 (2003)Maumbe, B.M., Okello, J.: Uses of information and communication technology (ICT) in agriculture and rural development in Sub-Saharan Africa: experiences from South Africa and Kenya. IJICTRDA 1(1), 1–22 (2010)Dlodlo, N., Kalezhi, J.: The internet of things in agriculture for sustainable rural development. In: International Conference on Emerging Trends in Networks and Computer Communications (ETNCC) (2015
    corecore