5,870 research outputs found

    Exact solution of the Schr\"{o}dinger equation for an hydrogen atom at the interface between the vacuum and a topologically insulating surface

    Full text link
    When an hydrogen atom is brought near to the interface between θ\theta-media, the quantum-mechanical motion of the electron will be affected by the electromagnetic interaction between the atomic charges and the θ\theta-interface, which is described by an axionic extension of Maxwell electrodynamics in the presence of a boundary. In this paper we investigate the atom-surface interaction effects upon the energy levels and wave functions of an hydrogen atom placed at the interface between a θ\theta-medium and the vacuum. In the approximation considered, the Schr\"{o}dinger equation can be exactly solved by separation of variables in terms of hypergeometic functions for the angular part and hydrogenic functions for the radial part. In order to make such effects apparent we deal with unrealistic high values of the θ\theta-parameter. We also compute the energy shifts using perturbation theory for a particular small value of θ\theta and we demonstrate that they are in a very good agreement with the ones obtained from the exact solution.Comment: 20 pages, 17 figures, 6 tables, Accepted for publication in the European Physics Journal

    Chaos in resonant-tunneling superlattices

    Full text link
    Spatio-temporal chaos is predicted to occur in n-doped semiconductor superlattices with sequential resonant tunneling as their main charge transport mechanism. Under dc voltage bias, undamped time-dependent oscillations of the current (due to the motion and recycling of electric field domain walls) have been observed in recent experiments. Chaos is the result of forcing this natural oscillation by means of an appropriate external microwave signal.Comment: 3 pages, LaTex, RevTex, 3 uuencoded figures (1.2M) are available upon request from [email protected], to appear in Phys.Rev.

    Current-voltage characteristic and stability in resonant-tunneling n-doped semiconductor superlattices

    Full text link
    We review the occurrence of electric-field domains in doped superlattices within a discrete drift model. A complete analysis of the construction and stability of stationary field profiles having two domains is carried out. As a consequence, we can provide a simple analytical estimation for the doping density above which stable stable domains occur. This bound may be useful for the design of superlattices exhibiting self-sustained current oscillations. Furthermore we explain why stable domains occur in superlattices in contrast to the usual Gunn diode.Comment: Tex file and 3 postscript figure

    A moment based approach to the dynamical solution of the Kuramoto model

    Get PDF
    We examine the dynamics of the Kuramoto model with a new analytical approach. By defining an appropriate set of moments the dynamical equations can be exactly closed. We discuss some applications of the formalism like the existence of an effective Hamiltonian for the dynamics. We also show how this approach can be used to numerically investigate the dynamical behavior of the model without finite size effects.Comment: 6 pages, 5 figures, Revtex file, to appear in J. Phys.

    Nonlinear stochastic discrete drift-diffusion theory of charge fluctuations and domain relocation times in semiconductor superlattices

    Full text link
    A stochastic discrete drift-diffusion model is proposed to account for the effects of shot noise in weakly coupled, highly doped semiconductor superlattices. Their current-voltage characteristics consist of a number stable multistable branches corresponding to electric field profiles displaying two domains separated by a domain wall. If the initial state corresponds to a voltage on the middle of a stable branch and a sudden voltage is switched so that the final voltage corresponds to the next branch, the domains relocate after a certain delay time. Shot noise causes the distribution of delay times to change from a Gaussian to a first passage time distribution as the final voltage approaches that of the end of the first current branch. These results agree qualitatively with experiments by Rogozia {\it et al} (Phys. Rev. B {\bf 64}, 041308(R) (2001)).Comment: 9 pages, 12 figures, 2 column forma

    Temperature dependence of current self-oscillations and electric field domains in sequential tunneling doped superlattices

    Full text link
    We examine how the current--voltage characteristics of a doped weakly coupled superlattice depends on temperature. The drift velocity of a discrete drift model of sequential tunneling in a doped GaAs/AlAs superlattice is calculated as a function of temperature. Numerical simulations and theoretical arguments show that increasing temperature favors the appearance of current self-oscillations at the expense of static electric field domain formation. Our findings agree with available experimental evidence.Comment: 7 pages, 5 figure

    Edge dislocations in crystal structures considered as traveling waves of discrete models

    Get PDF
    The static stress needed to depin a 2D edge dislocation, the lower dynamic stress needed to keep it moving, its velocity and displacement vector profile are calculated from first principles. We use a simplified discrete model whose far field distortion tensor decays algebraically with distance as in the usual elasticity. An analytical description of dislocation depinning in the strongly overdamped case (including the effect of fluctuations) is also given. A set of NN parallel edge dislocations whose centers are far from each other can depin a given one provided N=O(L)N=O(L), where LL is the average inter-dislocation distance divided by the Burgers vector of a single dislocation. Then a limiting dislocation density can be defined and calculated in simple cases.Comment: 10 pages, 3 eps figures, Revtex 4. Final version, corrected minor error

    Dynamics of Electric Field Domains and Oscillations of the Photocurrent in a Simple Superlattice Model

    Full text link
    A discrete model is introduced to account for the time-periodic oscillations of the photocurrent in a superlattice observed by Kwok et al, in an undoped 40 period AlAs/GaAs superlattice. Basic ingredients are an effective negative differential resistance due to the sequential resonant tunneling of the photoexcited carriers through the potential barriers, and a rate equation for the holes that incorporates photogeneration and recombination. The photoexciting laser acts as a damping factor ending the oscillations when its power is large enough. The model explains: (i) the known oscillatory static I-V characteristic curve through the formation of a domain wall connecting high and low electric field domains, and (ii) the photocurrent and photoluminescence time-dependent oscillations after the domain wall is formed. In our model, they arise from the combined motion of the wall and the shift of the values of the electric field at the domains. Up to a certain value of the photoexcitation, the non-uniform field profile with two domains turns out to be metastable: after the photocurrent oscillations have ceased, the field profile slowly relaxes toward the uniform stationary solution (which is reached on a much longer time scale). Multiple stability of stationary states and hysteresis are also found. An interpretation of the oscillations in the photoluminescence spectrum is also given.Comment: 34 pages, REVTeX 3.0, 10 figures upon request, MA/UC3M/07/9

    Effects of noise on hysteresis and resonance width in graphene and nanotubes resonators

    Get PDF
    We investigate the role that noise plays in the hysteretic dynamics of a suspended nanotube or a graphene sheet subject to an oscillating force. We find that not only the size but also the position of the hysteresis region in these systems can be controlled by noise. We also find that nano-resonators act as noise rectifiers: by increasing the noise in the setup, the resonance width of the characteristic peak in these systems is reduced and, as a result, the quality factor is increased.Comment: 15 pages, 6 figures. Sent to PRB (in revision

    Symmetric hyperbolic systems for a large class of fields in arbitrary dimension

    Get PDF
    Symmetric hyperbolic systems of equations are explicitly constructed for a general class of tensor fields by considering their structure as r-fold forms. The hyperbolizations depend on 2r-1 arbitrary timelike vectors. The importance of the so-called "superenergy" tensors, which provide the necessary symmetric positive matrices, is emphasized and made explicit. Thereby, a unified treatment of many physical systems is achieved, as well as of the sometimes called "higher order" systems. The characteristics of these symmetric hyperbolic systems are always physical, and directly related to the null directions of the superenergy tensor, which are in particular principal null directions of the tensor field solutions. Generic energy estimates and inequalities are presented too.Comment: 24 pages, no figure
    • …
    corecore