99 research outputs found

    Free boundary problems describing two-dimensional pulse recycling and motion in semiconductors

    Full text link
    An asymptotic analysis of the Gunn effect in two-dimensional samples of bulk n-GaAs with circular contacts is presented. A moving pulse far from contacts is approximated by a moving free boundary separating regions where the electric potential solves a Laplace equation with subsidiary boundary conditions. The dynamical condition for the motion of the free boundary is a Hamilton-Jacobi equation. We obtain the exact solution of the free boundary problem (FBP) in simple one-dimensional and axisymmetric geometries. The solution of the FBP is obtained numerically in the general case and compared with the numerical solution of the full system of equations. The agreement is excellent so that the FBP can be adopted as the basis for an asymptotic study of the multi-dimensional Gunn effect.Comment: 19 pages, 9 figures, Revtex. To appear in Phys. Rev.

    Theory of charge fluctuations and domain relocation times in semiconductor superlattices

    Full text link
    Shot noise affects differently the nonlinear electron transport in semiconductor superlattices depending on the strength of the coupling among the superlattice quantum wells. Strongly coupled superlattices can be described by a miniband Boltzmann-Langevin equation from which a stochastic drift-diffusion equation is derived by means of a consistent Chapman-Enskog method. Similarly, shot noise in weakly coupled, highly doped semiconductor superlattices is described by a stochastic discrete drift-diffusion model. The current-voltage characteristics of the corresponding deterministic model consist of a number of stable branches corresponding to electric field profiles displaying two domains separated by a domain wall. If the initial state corresponds to a voltage on the middle of a stable branch and is suddenly switched to a final voltage corresponding to the next branch, the domains relocate after a certain delay time, called relocation time. The possible scalings of this mean relocation time are discussed using bifurcation theory and the classical results for escape of a Brownian particle from a potential well.Comment: 14 pages, 2 figure

    Axisymmetric pulse recycling and motion in bulk semiconductors

    Full text link
    The Kroemer model for the Gunn effect in a circular geometry (Corbino disks) has been numerically solved. The results have been interpreted by means of asymptotic calculations. Above a certain onset dc voltage bias, axisymmetric pulses of the electric field are periodically shed by an inner circular cathode. These pulses decay as they move towards the outer anode, which they may not reach. As a pulse advances, the external current increases continuously until a new pulse is generated. Then the current abruptly decreases, in agreement with existing experimental results. Depending on the bias, more complex patterns with multiple pulse shedding are possible.Comment: 8 pages, 15 figure

    Theory of Defect Dynamics in Graphene

    Get PDF

    Asymptotics of the trap-dominated Gunn effect in p-type Ge

    Full text link
    We present an asymptotic analysis of the Gunn effect in a drift-diffusion model---including electric-field-dependent generation-recombination processes---for long samples of strongly compensated p-type Ge at low temperature and under dc voltage bias. During each Gunn oscillation, there are different stages corresponding to the generation, motion and annihilation of solitary waves. Each stage may be described by one evolution equation for only one degree of freedom (the current density), except for the generation of each new wave. The wave generation is a faster process that may be described by solving a semiinfinite canonical problem. As a result of our study we have found that (depending on the boundary condition) one or several solitary waves may be shed during each period of the oscillation. Examples of numerical simulations validating our analysis are included.Comment: Revtex, 25 pag., 5 fig., to appear Physica

    Protein unfolding and refolding as transitions through virtual states

    Get PDF
    Single-molecule atomic force spectroscopy probes elastic properties of titin, ubiquitin and other relevant proteins. We explain bioprotein folding dynamics under both length- and force-clamp by modeling polyprotein modules as particles in a bistable potential, weakly connected by harmonic spring linkers. Multistability of equilibrium extensions provides the characteristic sawtooth force-extension curve. We show that abrupt or stepwise unfolding and refolding under force-clamp conditions involve transitions through virtual states (which are quasi-stationary domain configurations) modified by thermal noise. These predictions agree with experimental observations

    Aging in the Linear Harmonic Oscillator

    Full text link
    The low temperature Monte Carlo dynamics of an ensemble of linear harmonic oscillators shows some entropic barriers related to the difficulty of finding the directions in configurational space which decrease the energy. This mechanism is enough to observe some typical non-equilibrium features of glassy systems like activated-type behavior and aging in the correlation function and in the response function. Due to the absence of interactions the model only displays a one-step relaxation process.Comment: 6 pages revtex including 3 figures in postscrip

    Kinetics of helium bubble formation in nuclear materials

    Full text link
    The formation and growth of helium bubbles due to self-irradiation in plutonium has been modelled by a discrete kinetic equations for the number densities of bubbles having kk atoms. Analysis of these equations shows that the bubble size distribution function can be approximated by a composite of: (i) the solution of partial differential equations describing the continuum limit of the theory but corrected to take into account the effects of discreteness, and (ii) a local expansion about the advancing leading edge of the distribution function in size space. Both approximations contribute to the memory term in a close integrodifferential equation for the monomer concentration of single helium atoms. The present boundary layer theory for discrete equations is compared to the numerical solution of the full kinetic model and to previous approximation of Schaldach and Wolfer involving a truncated system of moment equations.Comment: 24 pages, 6 figures, to appear in Physica

    Effects of disorder on the wave front depinning transition in spatially discrete systems

    Get PDF
    Pinning and depinning of wave fronts are ubiquitous features of spatially discrete systems describing a host of phenomena in physics, biology, etc. A large class of discrete systems is described by overdamped chains of nonlinear oscillators with nearest-neighbor coupling and subject to random external forces. The presence of weak randomness shrinks the pinning interval and it changes the critical exponent of the wave front depinning transition from 1/2 to 3/2. This effect is derived by means of a recent asymptotic theory of the depinning transition, extended to discrete drift-diffusion models of transport in semiconductor superlattices and confirmed by numerical calculations.Comment: 4 pages, 3 figures, to appear as a Rapid Commun. in Phys. Rev.

    Synchronization in populations of globally coupled oscillators with inertial effects

    Full text link
    A model for synchronization of globally coupled phase oscillators including ``inertial'' effects is analyzed. In such a model, both oscillator frequencies and phases evolve in time. Stationary solutions include incoherent (unsynchronized) and synchronized states of the oscillator population. Assuming a Lorentzian distribution of oscillator natural frequencies, g(Ω)g(\Omega), both larger inertia or larger frequency spread stabilize the incoherent solution, thereby making harder to synchronize the population. In the limiting case g(Ω)=δ(Ω)g(\Omega)=\delta(\Omega), the critical coupling becomes independent of inertia. A richer phenomenology is found for bimodal distributions. For instance, inertial effects may destabilize incoherence, giving rise to bifurcating synchronized standing wave states. Inertia tends to harden the bifurcation from incoherence to synchronized states: at zero inertia, this bifurcation is supercritical (soft), but it tends to become subcritical (hard) as inertia increases. Nonlinear stability is investigated in the limit of high natural frequencies.Comment: Revtex, 36 pages, submit to Phys. Rev.
    corecore