Pinning and depinning of wave fronts are ubiquitous features of spatially
discrete systems describing a host of phenomena in physics, biology, etc. A
large class of discrete systems is described by overdamped chains of nonlinear
oscillators with nearest-neighbor coupling and subject to random external
forces. The presence of weak randomness shrinks the pinning interval and it
changes the critical exponent of the wave front depinning transition from 1/2
to 3/2. This effect is derived by means of a recent asymptotic theory of the
depinning transition, extended to discrete drift-diffusion models of transport
in semiconductor superlattices and confirmed by numerical calculations.Comment: 4 pages, 3 figures, to appear as a Rapid Commun. in Phys. Rev.