research

Effects of disorder on the wave front depinning transition in spatially discrete systems

Abstract

Pinning and depinning of wave fronts are ubiquitous features of spatially discrete systems describing a host of phenomena in physics, biology, etc. A large class of discrete systems is described by overdamped chains of nonlinear oscillators with nearest-neighbor coupling and subject to random external forces. The presence of weak randomness shrinks the pinning interval and it changes the critical exponent of the wave front depinning transition from 1/2 to 3/2. This effect is derived by means of a recent asymptotic theory of the depinning transition, extended to discrete drift-diffusion models of transport in semiconductor superlattices and confirmed by numerical calculations.Comment: 4 pages, 3 figures, to appear as a Rapid Commun. in Phys. Rev.

    Similar works