2,647 research outputs found
The Semiclassical and Quantum Regimes of Superradiant Light Scattering from a Bose-Einstein Condensate
We show that many features of the recent experiments of Schneble et al. [D.
Schneble, Y. Torii, M. Boyd, E.W. Streed, D.E. Pritchard and W. Ketterle,
Science vol. 300, p. 475 (2003)], which demonstrate two different regimes of
light scattering by a Bose-Einstein condensate, can be described using a
one-dimensional mean-field quantum CARL model, where optical amplification
occurs simultaneously with the production of a periodic density modulation in
the atomic medium. The two regimes of light scattering observed in these
experiments, originally described as ``Kapiza-Dirac scattering'' and
``Superradiant Rayleigh scattering'', can be interpreted as the semiclassical
and quantum limits respectively of CARL lasing.Comment: 10 pages, 5 figures - to appear in Journal of Optics
MyGIsFOS: an automated code for parameter determination and detailed abundance analysis in cool stars
The current and planned high-resolution, high-multiplexity stellar
spectroscopic surveys, as well as the swelling amount of under-utilized data
present in public archives have led to an increasing number of efforts to
automate the crucial but slow process to retrieve stellar parameters and
chemical abundances from spectra. We present MyGIsFOS, a code designed to
derive atmospheric parameters and detailed stellar abundances from medium -
high resolution spectra of cool (FGK) stars. We describe the general structure
and workings of the code, present analyses of a number of well studied stars
representative of the parameter space MyGIsFOS is designed to cover, and
examples of the exploitation of MyGIsFOS very fast analysis to assess
uncertainties through Montecarlo tests. MyGIsFOS aims to reproduce a
``traditional'' manual analysis by fitting spectral features for different
elements against a precomputed grid of synthetic spectra. Fe I and Fe II lines
can be employed to determine temperature, gravity, microturbulence, and
metallicity by iteratively minimizing the dependence of Fe I abundance from
line lower energy and equivalent width, and imposing Fe I - Fe II ionization
equilibrium. Once parameters are retrieved, detailed chemical abundances are
measured from lines of other elements. MyGIsFOS replicates closely the results
obtained in similar analyses on a set of well known stars. It is also quite
fast, performing a full parameter determination and detailed abundance analysis
in about two minutes per star on a mainstream desktop computer. Currently, its
preferred field of application are high-resolution and/or large spectral
coverage data (e.g UVES, X-Shooter, HARPS, Sophie).Comment: 15 pages, 14 figures, accepted for publication by A&
Lithium abundances in extremely metal-poor turn-off stars
We discuss the current status of the sample of Lithium abundances in
extremely metal poor (EMP) turn-off (TO) stars collected by our group, and
compare it with the available literature results. In the last years, evidences
have accumulated of a progressive disruption of the Spite plateau in stars of
extremely low metallicity. What appears to be a flat, thin plateau above
[Fe/H]\sim-2.8 turns, at lower metallicities, into a broader distribution for
which the plateau level constitutes the upper limit, but more and more stars
show lower Li abundances. The sample we have collected currently counts
abundances or upper limits for 44 EMP TO stars between [Fe/H]=-2.5 and -3.5,
plus the ultra-metal poor star SDSS J102915+172927 at [Fe/H]=-4.9. The
"meltdown" of the Spite plateau is quite evident and, at the current status of
the sample, does not appear to be restricted to the cool end of the effective
temperature distribution. SDSS J102915+172927 displays an extreme Li depletion
that contrasts with its otherwise quite ordinary set of [X/Fe] ratios.Comment: 6 pages, 4 figures, proceedings of the "Lithium in the Cosmos"
conference, Paris, 27-29 February 201
Neutrinos And Big Bang Nucleosynthesis
The early universe provides a unique laboratory for probing the frontiers of
particle physics in general and neutrino physics in particular. The primordial
abundances of the relic nuclei produced during the first few minutes of the
evolution of the Universe depend on the electron neutrinos through the
charged-current weak interactions among neutrons and protons (and electrons and
positrons and neutrinos), and on all flavors of neutrinos through their
contributions to the total energy density which regulates the universal
expansion rate. The latter contribution also plays a role in determining the
spectrum of the temperature fluctuations imprinted on the Cosmic Background
Radiation (CBR) some 400 thousand years later. Using deuterium as a baryometer
and helium-4 as a chronometer, the predictions of BBN and the CBR are compared
to observations. The successes of, as well as challenges to the standard models
of particle physics and cosmology are identified. While systematic
uncertainties may be the source of some of the current tensions, it could be
that the data are pointing the way to new physics. In particular, BBN and the
CBR are used to address the questions of whether or not the relic neutrinos
were fully populated in the early universe and, to limit the magnitude of any
lepton asymmetry which may be concealed in the neutrinos.Comment: Accepted for publication in the Proceedings of Nobel Symposium 129,
"Neutrino Physics"; to appear in Physics Scripta, eds., L Bergstrom, O.
Botner, P. Carlson, P. O. Hulth, and T. Ohlsso
6Li detection in metal-poor stars: can 3D model atmospheres solve the second lithium problem?
The presence of 6Li in the atmospheres of metal-poor halo stars is usually
inferred from the detection of a subtle extra depression in the red wing of the
7Li doublet line at 670.8 nm. However, the intrinsic line asymmetry caused by
convective flows in the photospheres of cool stars is almost indistinguishable
from the asymmetry produced by a weak 6Li blend on a (presumed) symmetric 7Li
profile. Previous determinations of the 6Li/ 7Li isotopic ratio based on 1D
model atmospheres, ignoring the convection-induced line asymmetry, must
therefore be considered as upper limits. By comparing synthetic 1D LTE and 3D
non-LTE line profiles of the Li 670.8 nm feature, we quantify the differential
effect of the convective line asymmetry on the derived 6Li abundance as a
function of effective temperature, gravity, and metallicity. As expected, we
find that the asymmetry effect systematically reduces the resulting 6Li/7Li
ratios. Depending on the stellar parameters, the 3D-1D offset in 6Li/7Li ranges
between -0.005 and -0.020. When this purely theoretical correction is taken
into account for the Asplund 2006 sample of stars, the number of significant
6Li detections decreases from 9 to 5 (2 sigma criterion), or from 5 to 2 (3
sigma criterion).
We also present preliminary results of a re-analysis of high-resolution, high
S/N spectra of individual metal-poor turn-off stars, to see whether the "second
Lithium problem" actually disappears when accounting properly for convection
and non-LTE line formation in 3D stellar atmospheres. Out of 8 stars, HD84937
seems to be the only significant (2 sigma) detection of 6Li. In view of our
results, the existence of a 6Li plateau appears questionable.Comment: To appear in the proceedings of 'Lithium in the Cosmos', Paris, Feb.
27-29, 2012, Memorie della Societa' Astronomica Italiana Supplement
An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres I. Formation of the G-band in metal-poor dwarf stars
Recent developments in the three-dimensional (3D) spectral synthesis code
Linfor3D have meant that, for the first time, large spectral wavelength
regions, such as molecular bands, can be synthesised with it in a short amount
of time. A detailed spectral analysis of the synthetic G-band for several dwarf
turn-off-type 3D atmospheres (5850 <= T_eff [K] <= 6550, 4.0 <= log g <= 4.5,
-3.0 <= [Fe/H] <= -1.0) was conducted, under the assumption of local
thermodynamic equilibrium. We also examine carbon and oxygen molecule formation
at various metallicity regimes and discuss the impact it has on the G-band.
Using a qualitative approach, we describe the different behaviours between the
3D atmospheres and the traditional one-dimensional (1D) atmospheres and how the
different physics involved inevitably leads to abundance corrections, which
differ over varying metallicities. Spectra computed in 1D were fit to every 3D
spectrum to determine the 3D abundance correction. Early analysis revealed that
the CH molecules that make up the G-band exhibited an oxygen abundance
dependency; a higher oxygen abundance leads to weaker CH features. Nitrogen
abundances showed zero impact to CH formation. The 3D corrections are also
stronger at lower metallicity. Analysis of the 3D corrections to the G-band
allows us to assign estimations of the 3D abundance correction to most dwarf
stars presented in the literature. The 3D corrections suggest that A(C) in CEMP
stars with high A(C) would remain unchanged, but would decrease in CEMP stars
with lower A(C). It was found that the C/O ratio is an important parameter to
the G-band in 3D. Additional testing confirmed that the C/O ratio is an equally
important parameter for OH transitions under 3D. This presents a clear
interrelation between the carbon and oxygen abundances in 3D atmospheres
through their molecular species, which is not seen in 1D.Comment: 19 pages, 13 figures, 4 tables. Accepted for publication in A&
Early Universe Constraints on Time Variation of Fundamental Constants
We study the time variation of fundamental constants in the early Universe.
Using data from primordial light nuclei abundances, CMB and the 2dFGRS power
spectrum, we put constraints on the time variation of the fine structure
constant , and the Higgs vacuum expectation value leads to a variation
in the electron mass, among other effects. Along the same line, we study the
variation of and the electron mass . In a purely phenomenological
fashion, we derive a relationship between both variations.Comment: 18 pages, 12 figures, accepted for publication in Physical Review
Carbon-enhanced metal-poor stars: the most pristine objects?
Carbon-enhanced metal poor stars (CEMP) form a significant proportion of the
metal-poor stars, their origin is not well understood. Three very metal-poor
C-rich turnoff stars were selected from the SDSS survey, observed with the ESO
VLT (UVES) to precisely determine the element abundances. In turnoff stars
(unlike giants) the carbon abundance has not been affected by mixing with deep
layers and is therefore easier to interpret. The analysis was performed with 1D
LTE static model atmospheres. When available, non-LTE corrections were applied
to the classical LTE abundances. The 3D effects on the CH and CN molecular
bands were computed using hydrodynamical simulations of the stellar atmosphere
(CO5BOLD) and are found to be very important. To facilitate a comparison with
previous results, only 1D abundances are used in the discussion. The abundances
(or upper limits) of the elements enable us to place these stars in different
CEMP classes. The carbon abundances confirm the existence of a plateau at A(C)=
8.25 for [Fe/H] \geq -3.4. The most metal-poor stars ([Fe/H] < -3.4) have
significantly lower carbon abundances, suggesting a lower plateau at A(C)
\approx 6.5. Detailed analyses of a larger sample of very low metallicity
carbon-rich stars are required to confirm (or refute) this possible second
plateau and specify the behavior of the CEMP stars at very low metallicity
3D molecular line formation in dwarf carbon-enhanced metal-poor stars
We present a detailed analysis of the carbon and nitrogen abundances of two
dwarf carbon-enhanced metal-poor (CEMP) stars: SDSS J1349-0229 and SDSS
J0912+0216. We also report the oxygen abundance of SDSS J1349-0229. These stars
are metal-poor, with [Fe/H] < -2.5, and were selected from our ongoing survey
of extremely metal-poor dwarf candidates from the Sloan Digital SkySurvey
(SDSS). The carbon, nitrogen and oxygen abundances rely on molecular lines
which form in the outer layers of the stellar atmosphere. It is known that
convection in metal-poor stars induces very low temperatures which are not
predicted by `classical' 1D stellar atmospheres. To obtain the correct
temperature structure, one needs full 3D hydrodynamical models. Using CO5BOLD
3D hydrodynamical model atmospheres and the Linfor3D line formation code,
molecular lines of CH, NH, OH and C2 were computed, and 3D carbon, nitrogen and
oxygen abundances were determined. The resulting carbon abundances were
compared to abundances derived using atomic CI lines in 1D LTE and NLTE. There
is not a good agreement between the carbon abundances determined from C2 bands
and from the CH band, and molecular lines do not agree with the atomic CI
lines. Although this may be partly due to uncertainties in the transition
probabilities of the molecular bands it certainly has to do with the
temperature structure of the outer layers of the adopted model atmosphere. We
explore the influence of the 3D model properties on the molecular abundance
determination. In particular, the choice of the number of opacity bins used in
the model calculations and its subsequent effects on the temperature structure
and molecular line formation is discussed. (Abridged)Comment: Poster presented at IAU JD 10, Rio de Janeiro, 10-11 August 2009,
published in Memorie della Societa' Astronomica Italiana, Vol. 80 n.3 P.735.
One reference corrected, matches the published versio
BBN For Pedestrians
The simplest, `standard' model of Big Bang Nucleosynthesis (SBBN) assumes
three light neutrinos (N_nu = 3) and no significant electron neutrino
asymmetry, leaving only one adjustable parameter: the baryon to photon ratio
eta. The primordial abundance of any one nuclide can, therefore, be used to
measure the baryon abundance and the value derived from the observationally
inferred primordial abundance of deuterium closely matches that from current,
non-BBN data, primarily from the WMAP survey. However, using this same estimate
there is a tension between the SBBN-predicted 4He and 7Li abundances and their
current, observationally inferred primordial abundances, suggesting that N_nu
may differ from the standard model value of three and/or that there may be a
non-zero neutral lepton asymmetry (or, that systematic errors in the abundance
determinations have been underestimated or overlooked). The differences are not
large and the allowed ranges of the BBN parameters permitted by the data are
quite small. Within these ranges, the BBN-predicted abundances of D, 3He, 4He,
and 7Li are very smooth, monotonic functions of eta, N_nu, and the lepton
asymmetry. It is possible to describe the dependencies of these abundances (or
powers of them) upon the three parameters by simple, linear fits which, over
their ranges of applicability, are accurate to a few percent or better. The
fits presented here have not been maximized for their accuracy but, for their
simplicity. To identify the ranges of applicability and relative accuracies,
they are compared to detailed BBN calculations; their utility is illustrated
with several examples. Given the tension within BBN, these fits should prove
useful in facilitating studies of the viability of proposals for non-standard
physics and cosmology, prior to undertaking detailed BBN calculations.Comment: Submitted to a Focus Issue on Neutrino Physics in New Journal of
Physics (www.njp.org
- …
