2,647 research outputs found

    The Semiclassical and Quantum Regimes of Superradiant Light Scattering from a Bose-Einstein Condensate

    Get PDF
    We show that many features of the recent experiments of Schneble et al. [D. Schneble, Y. Torii, M. Boyd, E.W. Streed, D.E. Pritchard and W. Ketterle, Science vol. 300, p. 475 (2003)], which demonstrate two different regimes of light scattering by a Bose-Einstein condensate, can be described using a one-dimensional mean-field quantum CARL model, where optical amplification occurs simultaneously with the production of a periodic density modulation in the atomic medium. The two regimes of light scattering observed in these experiments, originally described as ``Kapiza-Dirac scattering'' and ``Superradiant Rayleigh scattering'', can be interpreted as the semiclassical and quantum limits respectively of CARL lasing.Comment: 10 pages, 5 figures - to appear in Journal of Optics

    MyGIsFOS: an automated code for parameter determination and detailed abundance analysis in cool stars

    Full text link
    The current and planned high-resolution, high-multiplexity stellar spectroscopic surveys, as well as the swelling amount of under-utilized data present in public archives have led to an increasing number of efforts to automate the crucial but slow process to retrieve stellar parameters and chemical abundances from spectra. We present MyGIsFOS, a code designed to derive atmospheric parameters and detailed stellar abundances from medium - high resolution spectra of cool (FGK) stars. We describe the general structure and workings of the code, present analyses of a number of well studied stars representative of the parameter space MyGIsFOS is designed to cover, and examples of the exploitation of MyGIsFOS very fast analysis to assess uncertainties through Montecarlo tests. MyGIsFOS aims to reproduce a ``traditional'' manual analysis by fitting spectral features for different elements against a precomputed grid of synthetic spectra. Fe I and Fe II lines can be employed to determine temperature, gravity, microturbulence, and metallicity by iteratively minimizing the dependence of Fe I abundance from line lower energy and equivalent width, and imposing Fe I - Fe II ionization equilibrium. Once parameters are retrieved, detailed chemical abundances are measured from lines of other elements. MyGIsFOS replicates closely the results obtained in similar analyses on a set of well known stars. It is also quite fast, performing a full parameter determination and detailed abundance analysis in about two minutes per star on a mainstream desktop computer. Currently, its preferred field of application are high-resolution and/or large spectral coverage data (e.g UVES, X-Shooter, HARPS, Sophie).Comment: 15 pages, 14 figures, accepted for publication by A&

    Lithium abundances in extremely metal-poor turn-off stars

    Full text link
    We discuss the current status of the sample of Lithium abundances in extremely metal poor (EMP) turn-off (TO) stars collected by our group, and compare it with the available literature results. In the last years, evidences have accumulated of a progressive disruption of the Spite plateau in stars of extremely low metallicity. What appears to be a flat, thin plateau above [Fe/H]\sim-2.8 turns, at lower metallicities, into a broader distribution for which the plateau level constitutes the upper limit, but more and more stars show lower Li abundances. The sample we have collected currently counts abundances or upper limits for 44 EMP TO stars between [Fe/H]=-2.5 and -3.5, plus the ultra-metal poor star SDSS J102915+172927 at [Fe/H]=-4.9. The "meltdown" of the Spite plateau is quite evident and, at the current status of the sample, does not appear to be restricted to the cool end of the effective temperature distribution. SDSS J102915+172927 displays an extreme Li depletion that contrasts with its otherwise quite ordinary set of [X/Fe] ratios.Comment: 6 pages, 4 figures, proceedings of the "Lithium in the Cosmos" conference, Paris, 27-29 February 201

    Neutrinos And Big Bang Nucleosynthesis

    Full text link
    The early universe provides a unique laboratory for probing the frontiers of particle physics in general and neutrino physics in particular. The primordial abundances of the relic nuclei produced during the first few minutes of the evolution of the Universe depend on the electron neutrinos through the charged-current weak interactions among neutrons and protons (and electrons and positrons and neutrinos), and on all flavors of neutrinos through their contributions to the total energy density which regulates the universal expansion rate. The latter contribution also plays a role in determining the spectrum of the temperature fluctuations imprinted on the Cosmic Background Radiation (CBR) some 400 thousand years later. Using deuterium as a baryometer and helium-4 as a chronometer, the predictions of BBN and the CBR are compared to observations. The successes of, as well as challenges to the standard models of particle physics and cosmology are identified. While systematic uncertainties may be the source of some of the current tensions, it could be that the data are pointing the way to new physics. In particular, BBN and the CBR are used to address the questions of whether or not the relic neutrinos were fully populated in the early universe and, to limit the magnitude of any lepton asymmetry which may be concealed in the neutrinos.Comment: Accepted for publication in the Proceedings of Nobel Symposium 129, "Neutrino Physics"; to appear in Physics Scripta, eds., L Bergstrom, O. Botner, P. Carlson, P. O. Hulth, and T. Ohlsso

    6Li detection in metal-poor stars: can 3D model atmospheres solve the second lithium problem?

    Full text link
    The presence of 6Li in the atmospheres of metal-poor halo stars is usually inferred from the detection of a subtle extra depression in the red wing of the 7Li doublet line at 670.8 nm. However, the intrinsic line asymmetry caused by convective flows in the photospheres of cool stars is almost indistinguishable from the asymmetry produced by a weak 6Li blend on a (presumed) symmetric 7Li profile. Previous determinations of the 6Li/ 7Li isotopic ratio based on 1D model atmospheres, ignoring the convection-induced line asymmetry, must therefore be considered as upper limits. By comparing synthetic 1D LTE and 3D non-LTE line profiles of the Li 670.8 nm feature, we quantify the differential effect of the convective line asymmetry on the derived 6Li abundance as a function of effective temperature, gravity, and metallicity. As expected, we find that the asymmetry effect systematically reduces the resulting 6Li/7Li ratios. Depending on the stellar parameters, the 3D-1D offset in 6Li/7Li ranges between -0.005 and -0.020. When this purely theoretical correction is taken into account for the Asplund 2006 sample of stars, the number of significant 6Li detections decreases from 9 to 5 (2 sigma criterion), or from 5 to 2 (3 sigma criterion). We also present preliminary results of a re-analysis of high-resolution, high S/N spectra of individual metal-poor turn-off stars, to see whether the "second Lithium problem" actually disappears when accounting properly for convection and non-LTE line formation in 3D stellar atmospheres. Out of 8 stars, HD84937 seems to be the only significant (2 sigma) detection of 6Li. In view of our results, the existence of a 6Li plateau appears questionable.Comment: To appear in the proceedings of 'Lithium in the Cosmos', Paris, Feb. 27-29, 2012, Memorie della Societa' Astronomica Italiana Supplement

    An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres I. Formation of the G-band in metal-poor dwarf stars

    Full text link
    Recent developments in the three-dimensional (3D) spectral synthesis code Linfor3D have meant that, for the first time, large spectral wavelength regions, such as molecular bands, can be synthesised with it in a short amount of time. A detailed spectral analysis of the synthetic G-band for several dwarf turn-off-type 3D atmospheres (5850 <= T_eff [K] <= 6550, 4.0 <= log g <= 4.5, -3.0 <= [Fe/H] <= -1.0) was conducted, under the assumption of local thermodynamic equilibrium. We also examine carbon and oxygen molecule formation at various metallicity regimes and discuss the impact it has on the G-band. Using a qualitative approach, we describe the different behaviours between the 3D atmospheres and the traditional one-dimensional (1D) atmospheres and how the different physics involved inevitably leads to abundance corrections, which differ over varying metallicities. Spectra computed in 1D were fit to every 3D spectrum to determine the 3D abundance correction. Early analysis revealed that the CH molecules that make up the G-band exhibited an oxygen abundance dependency; a higher oxygen abundance leads to weaker CH features. Nitrogen abundances showed zero impact to CH formation. The 3D corrections are also stronger at lower metallicity. Analysis of the 3D corrections to the G-band allows us to assign estimations of the 3D abundance correction to most dwarf stars presented in the literature. The 3D corrections suggest that A(C) in CEMP stars with high A(C) would remain unchanged, but would decrease in CEMP stars with lower A(C). It was found that the C/O ratio is an important parameter to the G-band in 3D. Additional testing confirmed that the C/O ratio is an equally important parameter for OH transitions under 3D. This presents a clear interrelation between the carbon and oxygen abundances in 3D atmospheres through their molecular species, which is not seen in 1D.Comment: 19 pages, 13 figures, 4 tables. Accepted for publication in A&

    Early Universe Constraints on Time Variation of Fundamental Constants

    Get PDF
    We study the time variation of fundamental constants in the early Universe. Using data from primordial light nuclei abundances, CMB and the 2dFGRS power spectrum, we put constraints on the time variation of the fine structure constant α\alpha, and the Higgs vacuum expectation value withoutassuminganytheoreticalframework.Avariationin without assuming any theoretical framework. A variation in leads to a variation in the electron mass, among other effects. Along the same line, we study the variation of α\alpha and the electron mass mem_e. In a purely phenomenological fashion, we derive a relationship between both variations.Comment: 18 pages, 12 figures, accepted for publication in Physical Review

    Carbon-enhanced metal-poor stars: the most pristine objects?

    Get PDF
    Carbon-enhanced metal poor stars (CEMP) form a significant proportion of the metal-poor stars, their origin is not well understood. Three very metal-poor C-rich turnoff stars were selected from the SDSS survey, observed with the ESO VLT (UVES) to precisely determine the element abundances. In turnoff stars (unlike giants) the carbon abundance has not been affected by mixing with deep layers and is therefore easier to interpret. The analysis was performed with 1D LTE static model atmospheres. When available, non-LTE corrections were applied to the classical LTE abundances. The 3D effects on the CH and CN molecular bands were computed using hydrodynamical simulations of the stellar atmosphere (CO5BOLD) and are found to be very important. To facilitate a comparison with previous results, only 1D abundances are used in the discussion. The abundances (or upper limits) of the elements enable us to place these stars in different CEMP classes. The carbon abundances confirm the existence of a plateau at A(C)= 8.25 for [Fe/H] \geq -3.4. The most metal-poor stars ([Fe/H] < -3.4) have significantly lower carbon abundances, suggesting a lower plateau at A(C) \approx 6.5. Detailed analyses of a larger sample of very low metallicity carbon-rich stars are required to confirm (or refute) this possible second plateau and specify the behavior of the CEMP stars at very low metallicity

    3D molecular line formation in dwarf carbon-enhanced metal-poor stars

    Full text link
    We present a detailed analysis of the carbon and nitrogen abundances of two dwarf carbon-enhanced metal-poor (CEMP) stars: SDSS J1349-0229 and SDSS J0912+0216. We also report the oxygen abundance of SDSS J1349-0229. These stars are metal-poor, with [Fe/H] < -2.5, and were selected from our ongoing survey of extremely metal-poor dwarf candidates from the Sloan Digital SkySurvey (SDSS). The carbon, nitrogen and oxygen abundances rely on molecular lines which form in the outer layers of the stellar atmosphere. It is known that convection in metal-poor stars induces very low temperatures which are not predicted by `classical' 1D stellar atmospheres. To obtain the correct temperature structure, one needs full 3D hydrodynamical models. Using CO5BOLD 3D hydrodynamical model atmospheres and the Linfor3D line formation code, molecular lines of CH, NH, OH and C2 were computed, and 3D carbon, nitrogen and oxygen abundances were determined. The resulting carbon abundances were compared to abundances derived using atomic CI lines in 1D LTE and NLTE. There is not a good agreement between the carbon abundances determined from C2 bands and from the CH band, and molecular lines do not agree with the atomic CI lines. Although this may be partly due to uncertainties in the transition probabilities of the molecular bands it certainly has to do with the temperature structure of the outer layers of the adopted model atmosphere. We explore the influence of the 3D model properties on the molecular abundance determination. In particular, the choice of the number of opacity bins used in the model calculations and its subsequent effects on the temperature structure and molecular line formation is discussed. (Abridged)Comment: Poster presented at IAU JD 10, Rio de Janeiro, 10-11 August 2009, published in Memorie della Societa' Astronomica Italiana, Vol. 80 n.3 P.735. One reference corrected, matches the published versio

    BBN For Pedestrians

    Full text link
    The simplest, `standard' model of Big Bang Nucleosynthesis (SBBN) assumes three light neutrinos (N_nu = 3) and no significant electron neutrino asymmetry, leaving only one adjustable parameter: the baryon to photon ratio eta. The primordial abundance of any one nuclide can, therefore, be used to measure the baryon abundance and the value derived from the observationally inferred primordial abundance of deuterium closely matches that from current, non-BBN data, primarily from the WMAP survey. However, using this same estimate there is a tension between the SBBN-predicted 4He and 7Li abundances and their current, observationally inferred primordial abundances, suggesting that N_nu may differ from the standard model value of three and/or that there may be a non-zero neutral lepton asymmetry (or, that systematic errors in the abundance determinations have been underestimated or overlooked). The differences are not large and the allowed ranges of the BBN parameters permitted by the data are quite small. Within these ranges, the BBN-predicted abundances of D, 3He, 4He, and 7Li are very smooth, monotonic functions of eta, N_nu, and the lepton asymmetry. It is possible to describe the dependencies of these abundances (or powers of them) upon the three parameters by simple, linear fits which, over their ranges of applicability, are accurate to a few percent or better. The fits presented here have not been maximized for their accuracy but, for their simplicity. To identify the ranges of applicability and relative accuracies, they are compared to detailed BBN calculations; their utility is illustrated with several examples. Given the tension within BBN, these fits should prove useful in facilitating studies of the viability of proposals for non-standard physics and cosmology, prior to undertaking detailed BBN calculations.Comment: Submitted to a Focus Issue on Neutrino Physics in New Journal of Physics (www.njp.org
    corecore