13 research outputs found

    Performance Benefits of Pre- and Per-cooling on Self-paced Versus Constant Workload Exercise:A Systematic Review and Meta-analysis

    Get PDF
    BACKGROUND AND OBJECTIVE: Exercise in hot environments impairs endurance performance. Cooling interventions can attenuate the impact of heat stress on performance, but the influence of an exercise protocol on the magnitude of performance benefit remains unknown. This meta-analytical review compared the effects of pre- and per-cooling interventions on performance during self-paced and constant workload exercise in the heat.METHODS: The study protocol was preregistered at the Open Science Framework ( https://osf.io/wqjb3 ). A systematic literature search was performed in PubMed, Web of Science, and MEDLINE from inception to 9 June, 2023. We included studies that examined the effects of pre- or per-cooling on exercise performance in male individuals under heat stress (&gt; 30 °C) during self-paced or constant workload exercise in cross-over design studies. Risk of bias was assessed using the Cochrane Risk of Bias Tool for randomized trials.RESULTS: Fifty-nine studies (n = 563 athletes) were identified from 3300 records, of which 40 (n = 370 athletes) used a self-paced protocol and 19 (n = 193 athletes) used a constant workload protocol. Eighteen studies compared multiple cooling interventions and were included more than once (total n = 86 experiments and n = 832 paired measurements). Sixty-seven experiments used a pre-cooling intervention and 19 used a per-cooling intervention. Average ambient conditions were 34.0 °C [32.3-35.0 °C] and 50.0% [40.0-55.3%] relative humidity. Cooling interventions attenuated the performance decline in hot conditions and were more effective during a constant workload (effect size [ES] = 0.62, 95% confidence interval [CI] 0.44-0.81) compared with self-paced exercise (ES = 0.30, 95% CI 0.18-0.42, p = 0.004). A difference in performance outcomes between protocols was only observed with pre-cooling (ES = 0.74, 95% CI 0.50-0.98 vs ES = 0.29, 95% CI 0.17-0.42, p = 0.001), but not per-cooling (ES = 0.45, 95% CI 0.16-0.74 vs ES = 0.35, 95% CI 0.01-0.70, p = 0.68).CONCLUSIONS: Cooling interventions attenuated the decline in performance during exercise in the heat, but the magnitude of the effect is dependent on exercise protocol (self-paced vs constant workload) and cooling type (pre- vs per-cooling). Pre-cooling appears to be more effective in attenuating the decline in exercise performance during a constant workload compared with self-paced exercise protocols, whereas no differences were found in the effectiveness of per-cooling.</p

    Identification of neutrophil phenotype categories in geriatric hip fracture patients aids in personalized medicine

    Get PDF
    OBJECTIVES: The number of geriatric hip fracture patients is high and expected to rise in the coming years, and many are frail and at risk for adverse outcomes. Early identification of high-risk patients is crucial to balance treatment and optimize outcome, but remains challenging. Previous research in patients with multitrauma suggested that neutrophil phenotype analysis could aid in early identification of high-risk patients. This pilot study investigated the feasibility and clinical value of neutrophil phenotype analysis in geriatric patients with a hip fracture. METHODS: A prospective study was conducted in a regional teaching hospital in the Netherlands. At the emergency department, blood samples were collected from geriatric patients with a hip fracture and analyzed using automated flow cytometry. Flow cytometry data were processed using an automated clustering algorithm. Neutrophil activation data were compared with a healthy control cohort. Neutrophil phenotype categories were assessed based on two-dimensional visual assessment of CD16/CD62L expression. RESULTS: Blood samples from 45 geriatric patients with a hip fracture were included. Neutrophils showed an increased activation profile and decreased responsiveness to formyl peptides when compared to healthy controls. The neutrophil phenotype of all patients was categorized. The incidence of severe adverse outcome was significantly different between the different categories ( P = 0.0331). Moreover, patients with neutrophil phenotype category 0 developed no severe adverse outcomes. CONCLUSIONS: Using point-of-care fully automated flow cytometry to analyze the neutrophil compartment in geriatric hip fracture patients is feasible and holds clinical value in determining patients at risk for adverse outcome. This study is a first step toward immuno-based precision medicine for identifying geriatric hip fracture patients that are deemed fit for surgery

    Thermoregulation and fluid balance during a 30-km march in 60-versus 80-year-old subjects

    Get PDF
    The presence of impaired thermoregulatory and fluid balance responses to exercise in older individuals is well established. To improve our understanding on thermoregulation and fluid balance during exercise in older individuals, we compared thermoregulatory and fluid balance responses between sexagenarians and octogenarians during prolonged exercise. Forty sexagenarians (60 ± 1 year) and 36 octogenarians (81 ± 2 year) volunteered to participate in a 30-km march at a self-selected pace. Intestinal temperature (T in) and heart rate were recorded every 5 km. Subjects reported fluid intake, while urine output was measured and sweat rate was calculated. Octogenarians demonstrated a lower baseline T in and a larger exercise-induced increase in T in compared to sexagenarians (1.2 ± 0.5 °C versus 0.7 ± 0.4 °C, p  0.05). These results suggest that thermoregulatory responses deteriorate with advancing age, while fluid balance is regulated appropriately during a 30-km walking march under moderate ambient conditions

    Developing a geospatial measure of change in core temperature for migrating persons in the Mexico-U.S. border region

    No full text
    Although heat exposure is the leading cause of mortality for undocumented immigrants attempting to traverse the Mexico-U.S. border, there has been little work in quantifying risk. Therefore, our study aims to develop a methodology projecting increase in core temperature over time and space for migrants in Southern Arizona using spatial analysis and remote sensing in combination with the heat balance equation-adapting physiological formulae to a multi-step geospatial model using local climate conditions, terrain, and body specifics. We sought to quantitatively compare the results by demographic categories of age and sex and qualitatively compare them to known terrestrial conditions and prior studies of those conditions. We demonstrated a more detailed measure of risk for migrants than those used most recently: energy expenditure and terrain ruggedness. Our study not only gives a better understanding of the 'funnel effect' mechanisms, but also provides an opportunity for relief and rescue operations. (C) 2020 Elsevier Ltd. All rights reserved.24 month embargo; available online 24 July 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Real-Time Observations of Food and Fluid Timing During a 120 km Ultramarathon

    No full text
    The aim of the present case study was to use real-time observations to investigate ultramarathon runners' timing of food and fluid intake per 15 km and per hour, and total bodyweight loss due to dehydration. The study included 5 male ultramarathon runners observed during a 120 km race. The research team members followed on a bicycle and continuously observed their dietary intake using action cameras. Hourly carbohydrate intake ranged between 22.1 and 62.6 g/h, and fluid intake varied between 260 and 603 mL/h. These numbers remained relatively stable over the course of the ultra-endurance marathon. Runners consumed food and fluid on average 3–6 times per 15 km. Runners achieved a higher total carbohydrate consumption in the second half of the race (p = 0.043), but no higher fluid intake (p = 0.08). Energy gels contributed the most to the total average carbohydrate intake (40.2 ± 25.7%). Post-race weight was 3.6 ± 2.3% (range 0.3–5.7%) lower than pre-race weight, revealing a non-significant (p = 0.08) but practical relevant difference. In conclusion, runners were able to maintain a constant timing of food and fluid intake during competition but adjusted their food choices in the second half of the race. The large variation in fluid and carbohydrate intake indicate that recommendations need to be individualized to further optimize personal intakes

    Thermoregulatory, Cardiovascular and Perceptual Responses of Spectators of a Simulated Football Match in Hot and Humid Environmental Conditions

    No full text
    Major sporting events are often scheduled in thermally challenging environments. The heat stress may impact athletes but also spectators. We examined the thermal, cardiovascular, and perceptual responses of spectators watching a football match in a simulated hot and humid environment. A total of 48 participants (43 ± 9 years; n = 27 participants n = 21 participants ≥50 years, n = 21) watched a 90 min football match in addition to a 15 min baseline and 15 min halftime break, seated in an environmental chamber (Tair = 31.9 ± 0.4 °C; RH = 76 ± 4%). Gastrointestinal temperature (Tgi), skin temperature (Tskin), and heart rate (HR) were measured continuously throughout the match. Mean arterial pressure (MAP) and perceptual parameters (i.e., thermal sensation and thermal comfort) were scored every 15 min. Tri (37.3 ± 0.4 °C to 37.4 ± 0.3 °C, p = 0.11), HR (76 ± 15 bpm to 77 ± 14 bpm, p = 0.96) and MAP (97 ± 10 mm Hg to 97 ± 10 mm Hg, p = 0.67) did not change throughout the match. In contrast, an increase in Tskin (32.9 ± 0.8 °C to 35.4 ± 0.3 °C, p p-values > 0.05). Heat stress induced by watching a football match in simulated hot and humid conditions does not result in substantial thermal or cardiovascular strain, whereas a significant perceptual strain was observed

    Cooling vests alleviate perceptual heat strain perceived by COVID-19 nurses

    No full text
    Cooling vests alleviate heat strain. We quantified the perceptual and physiological heat strain and assessed the effects of wearing a 21°C phase change material cooling vest on these measures during work shifts of COVID-19 nurses wearing personal protective equipment (PPE). Seventeen nurses were monitored on two working days, consisting of a control (PPE only) and a cooling vest day (PPE + cooling vest). Sub-PPE air temperature, gastrointestinal temperature (T(gi)), and heart rate (HR) were measured continuously. Thermal comfort (2 [1–4] versus 1 [1–2], p(condtition) < 0.001) and thermal sensation (5 [4–7] versus 4 [2–7], p(condition) < 0.001) improved in the cooling vest versus control condition. Only 18% of nurses reported thermal discomfort and 36% a (slightly) warm thermal sensation in the cooling vest condition versus 81% and 94% in the control condition (OR (95%CI) 0.05 (0.01–0.29) and 0.04 (<0.01–0.35), respectively). Accordingly, perceptual strain index was lower in the cooling vest versus control condition (5.7 ± 1.5 versus 4.3 ± 1.7, p(condition) < 0.001, respectively). No differences were observed for the physiological heat strain index T(gi) and rating of perceived exertion across conditions. Average HR was slightly lower in the cooling vest versus the control condition (85 ± 12 versus 87 ± 11, p(condition) = 0.025). Although the physiological heat strain among nurses using PPE was limited, substantial perceptual heat strain was experienced. A 21°C phase change material cooling vest can successfully alleviate the perceptual heat strain encountered by nurses wearing PPE

    Supplementation with Whey Protein, but Not Pea Protein, Reduces Muscle Damage Following Long-Distance Walking in Older Adults

    No full text
    Background: Adequate animal-based protein intake can attenuate exercise induced-muscle damage (EIMD) in young adults. We examined the effects of 13 days plant-based (pea) protein supplementation compared to whey protein and placebo on EIMD in active older adults. Methods: 47 Physically active older adults (60+ years) were randomly allocated to the following groups: (I) whey protein (25 g/day), (II) pea protein (25 g/day) or (III) iso-caloric placebo. Blood concentrations of creatine kinase (CK) and lactate dehydrogenase (LDH), and skeletal muscle mass, muscle strength and muscle soreness were measured prior to and 24 h, 48 h and 72 h after a long-distance walking bout (20–30 km). Results: Participants walked 20–30 km and 2 dropped out, leaving n = 15 per subgroup. The whey group showed a significant attenuation of the increase in EIMD at 24 h post-exercise compared to the pea and placebo group (CK concentration: 175 ± 90 versus 300 ± 309 versus 330 ± 165, p = p p-values > 0.05). Conclusions: Thirteen days of pea protein supplementation (25 g/day) does not attenuate EIMD in older adults following a single bout of prolonged walking exercise, whereas the whey protein supplementation group showed significantly lower post-exercise CK concentrations
    corecore