737 research outputs found

    Fourier's Law in a Quantum Spin Chain and the Onset of Quantum Chaos

    Full text link
    We study heat transport in a nonequilibrium steady state of a quantum interacting spin chain. We provide clear numerical evidence of the validity of Fourier law. The regime of normal conductivity is shown to set in at the transition to quantum chaos.Comment: 4 pages, 5 figures, RevTe

    Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations

    Full text link
    We study heat conduction in (n, 0)/(2n, 0) intramolecular junctions by using molecular dynamics method. It is found that the heat conduction is asymmetric, namely, heat transports preferably in one direction. This phenomenon is also called thermal rectification. The rectification is weakly dependent on the detailed structure of connection part, but is strongly dependent on the temperature gradient. We also study the effect of the tube radius and intramolecular junction length on the rectification. Our study shows that the tensile stress can increase rectification. The physical mechanism of the rectification is explained

    Normal heat conduction in one dimensional momentum conserving lattices with asymmetric interactions

    Full text link
    The heat conduction behavior of one dimensional momentum conserving lattice systems with asymmetric interparticle interactions is numerically investigated. It is found that with certain degree of interaction asymmetry, the heat conductivity measured in nonequilibrium stationary states converges in the thermodynamical limit, in clear contrast to the well accepted viewpoint that Fourier's law is generally violated in low dimensional momentum conserving systems. It suggests in nonequilibrium stationary states the mass gradient resulted from the asymmetric interactions may provide an additional phonon scattering mechanism other than that due to the nonlinear interactions.Comment: 4 pages, 4 figure

    Mechanical properties of microcrystalline branching selenite gypsum samples and influence of constituting factors

    Get PDF
    The high sedimentological variability of gypsum rocks has the effect that a univocal characterization of this material is not easy to establish. This is particularly true from the geomechanical point of view: when the mechanical properties of gypsum rocks are requested, it is therefore necessary to undertake detailed characterization analyses. Common facies of gypsum was observed in the Upper Miocene evaporitic succession (Messinian Salinity Crisis) within the whole Mediterranean Basin. In this work, mechanical tests were conducted on a site-specific facies, represented by the microcrystalline branching selenite. The tested samples came from the Monferrato area (northwestern Italy). Uniaxial compressive strength (UCS) tests were performed in order to obtain reference mechanical parameters. More rapid and economic point load test (PLT) and ultrasonic pulse velocity (UPV) measurements were additionally performed to verify their applicability as complementary/alternative methods for site characterization. Rock-type specific PLT-UCS and UPV-UCS relationships were established. A wide dispersion of the mechanical parameters was observed due to the heterogeneities of the studied material. Consequently, compositional, textural and microstructural observations on selected samples were performed. Two main material classes were recognized based on average grain size and total gypsum content, underlining the significant influence of the grain sorting on the measured mechanical properties

    The October 2000 flooding in Valle d'Aosta (Italy): Event description and land planning measures for the risk mitigation

    Get PDF
    On October 13-16th, 2000 heavy rainfalls in the Northwestern Italian Alps caused huge flooding and landslides with significant damages to houses and infrastructures and several life losses. In this paper a description of the main events that affected Valle d’Aosta’s region and the subsequent land planning measures adopted for the risk mitigation are presented. After a first meteorological and hydrological framing, based on the data of the regional monitoring system (that pointed out rainfalls up to 236 mm in 24 h also in high‐altitude zones, because of the rise of the isotherm 0°C around 3000 m above sea level), the main effects of the event (extensive flooding, landslides, soil slips and debris flows) in the regional catchment of the Dora Baltea river are described. Through aerial and direct surveys those effects have been transferred into a thematic cartography within two months from the event, in order to have detailed elements for the technical, administrative and political land planning decisions, and, on this basis, a new regional directive containing detailed measures for the hydro‐geological risk mitigation and land safety has been adopted. © 2003 by Taylor nad Francis Group, LLC

    Nonequilibrium dynamics of a stochastic model of anomalous heat transport: numerical analysis

    Full text link
    We study heat transport in a chain of harmonic oscillators with random elastic collisions between nearest-neighbours. The equations of motion of the covariance matrix are numerically solved for free and fixed boundary conditions. In the thermodynamic limit, the shape of the temperature profile and the value of the stationary heat flux depend on the choice of boundary conditions. For free boundary conditions, they also depend on the coupling strength with the heat baths. Moreover, we find a strong violation of local equilibrium at the chain edges that determine two boundary layers of size N\sqrt{N} (where NN is the chain length), that are characterized by a different scaling behaviour from the bulk. Finally, we investigate the relaxation towards the stationary state, finding two long time scales: the first corresponds to the relaxation of the hydrodynamic modes; the second is a manifestation of the finiteness of the system.Comment: Submitted to Journal of Physics A, Mathematical and Theoretica

    Third Order Renormalization Group applied to the attractive one-dimensional Fermi Gas

    Full text link
    We consider a Callan-Symanzik and a Wilson Renormalization Group approach to the infrared problem for interacting fermions in one dimension with backscattering. We compute the third order (two-loop) approximation of the beta function using both methods and compare it with the well known multiplicative Gell-Mann Low approach. We point out a previously unnoticed qualitative dependence of the third order fixed point on an arbitrary dimensionless parameter, which strongly suggest the spurious nature of the fixed point.Comment: 16 pages, Revised version, added comment
    corecore