4,778 research outputs found

    Spinorial geometry, off-shell Killing spinor identities and higher derivative 5D supergravities

    Get PDF
    Killing spinor identities relate components of equations of motion to each other for supersymmetric backgrounds. The only input required is the field content and the supersymmetry transformations of the fields, as long as an on-shell supersymmetrization of the action without additional fields exists. If we consider off-shell supersymmetry it is clear that the same relations will occur between components of the equations of motion independently of the specific action considered, in particular the Killing spinor identities can be derived for arbitrary, including higher derivative, supergravities, with a specified matter content. We give the Killing spinor identities for five-dimensional N=2\mathcal{N}=2 ungauged supergravities coupled to Abelian vector multiplets, and then using spinorial geometry techniques so that we have explicit representatives for the spinors, we discuss the particular case of the time-like class of solutions to theories with perturbative corrections at the four derivative level. We also discuss the maximally supersymmetric solutions in the general off-shell case.Comment: 62 pages v2: fewer typos, and a few improvements in the text kindly suggested by a refere

    Spatially Selective and Reversible Doping Control in Cuprate Films

    Full text link
    We describe a reversible, spatially-controlled doping method for cuprate films. The technique has been used to create superconductor-antiferromagnetic insulator-superconductor (S-AFI-S) junctions and optimally doped superconductor-underdoped superconductor-optimally doped superconductor (OS-US-OS) cuprate structures. We demonstrate how the S-AFI-S structure can be employed to reliably measure the transport properties of the antiferromagnetic insulator region at cryogenic temperatures using the superconductors as seamless electrical leads. We also discuss applied and fundamental issues which may be addressed with the structures created with this doping method. Although it is implemented on a cuprate film (YBa2Cu3O7-delta) in this work, the method can also be applied to any mixed-valence transition metal oxide whose physical properties are determined by oxygen content.Comment: 14 pages, 4 figure

    Spontaneous heavy cluster emission rates using microscopic potentials

    Get PDF
    The nuclear cluster radioactivities have been studied theoretically in the framework of a microscopic superasymmetric fission model (MSAFM). The nuclear interaction potentials required for binary cold fission processes are calculated by folding in the density distribution functions of the two fragments with a realistic effective interaction. The microscopic nuclear potential thus obtained has been used to calculate the action integral within the WKB approximation. The calculated half lives of the present MSAFM calculations are found to be in good agreement over a wide range of observed experimental data.Comment: 4 pages, 4 figure

    X-Ray Detection of Transient Magnetic Moments Induced by a Spin Current in Cu

    Full text link
    We have used a MHz lock-in x-ray spectro-microscopy technique to directly detect changes of magnetic moments in Cu due to spin injection from an adjacent Co layer. The elemental and chemical specificity of x-rays allows us to distinguish two spin current induced effects. We detect the creation of transient magnetic moments of 3×1053\times 10^{-5} μB\mu_\mathrm{B} on Cu atoms within the bulk of the 28 nm thick Cu film due to spin-accumulation. The moment value is compared to predictions by Mott's two current model. We also observe that the hybridization induced existing magnetic moments on Cu interface atoms are transiently increased by about 10% or 4×1034\times 10^{-3} μB\mu_\mathrm{B}. This reveals the dominance of spin-torque alignment over Joule heat induced disorder of the interfacial Cu moments during current flow

    Liver injury by experimental portal bacteremia: histogenetic recovery study in the rat

    Get PDF
    Abstract - To study the histogenetic recovery of hepatic lesions due to portal bacteremia, a complication of some clinical conditions, an experimental animal model had developed. Portal bacteremia was performed in 8-week rats and the morphological recovery of liver was histologically checked 1 to 6 days after bacteria inoculation. The major injuries, such as acute inflammatory exudate of the portobiliary spaces, piecemeal necrosis of muralium, micro-abscesses and areas of hepatocyte necrosis of the liver parenchyma, and thrombosis in the centrolobular vein were recorded 1 day after inoculation. Minimal signs of vacuolar degeneration, steatosis, necrosis areas, vessel congestion and focal hemosiderosis together with a small hepatocyte proliferative activity was instead appreciable with longer time. The results seem to suggest a role of vascular structures and Kupffer cells in the morphological repair. This experimental model could serve to understand better similar clinical hepatology conditions, such as portal bacteremia.Informazioni util

    Direct Observation of Large Amplitude Spin Excitations Localized in a Spin-Transfer Nanocontact

    Full text link
    We report the direct observation of large amplitude spin-excitations localized in a spin-transfer nanocontact using scanning transmission x-ray microscopy. Experiments were conducted using a nanocontact to an ultrathin ferromagnetic multilayer with perpendicular magnetic anisotropy. Element resolved x-ray magnetic circular dichroism images show an abrupt onset of spin excitations at a threshold current that are localized beneath the nanocontact, with average spin precession cone angles of 25{\deg} at the contact center. The results strongly suggest that we have observed a localized magnetic soliton.Comment: 5 pages, 3 figure

    Versatile multipass cell for laser spectroscopic trace gas analysis

    Get PDF
    The design, construction and characterization of a novel circular multipass cell for sensitive trace gas analysis are presented. This cell allows for easy modification of the optical path length without any changes of its physical parameters. Furthermore, it is suited for three different detection techniques: direct absorption, wavelength modulation and photoacoustics. To demonstrate its performance, mixing ratios of 13CO2 and N2O were measured from ambient air, using a quantum cascade laser. With the direct absorption method, noise equivalent 1-s precisions of 2.7ppb and 0.2ppb are achieved for 13CO2 and N2O, respectively. The wavelength modulation technique resulted in 4.3ppb precision with 1-s averaging for the 13CO2 measurements. AQ-factor of 190 and a normalized noise equivalent minimum absorption of 1.3×10−8cm−1 W Hz−1/2 are achieved using the photoacoustic techniqu
    corecore