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ABSTRACT: Killing spinor identities relate components of equations of motion to each other
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of the action without additional fields exists. If we consider off-shell supersymmetry it is
clear that the same relations will occur between components of the equations of motion
independently of the specific action considered, in particular the Killing spinor identities
can be derived for arbitrary, including higher derivative, supergravities, with a specified
matter content. We give the Killing spinor identities for five-dimensional N' = 2 ungauged
supergravities coupled to Abelian vector multiplets, and then using spinorial geometry
techniques so that we have explicit representatives for the spinors, we discuss the particular
case of the time-like class of solutions to theories with perturbative corrections at the four
derivative level. We also discuss the maximally supersymmetric solutions in the general
off-shell case.
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1 Introduction

In recent years much technology has been developed in order to complete the important
task of classifying the supersymmetric solutions of supergravity theories. In this paper we
would like to point out the utility of the combination of two of these pieces of technology,
the so called spinorial geometry approach introduced in [1] and the Killing spinor identi-
ties [2, 3], particularly in the context of classifying the supersymmetric solutions of off-shell
supergravities, including in the presence of higher derivative terms.

The spinorial geometry approach is to represent the space of spinors using differential
forms and use the Spin(d — 1,1) gauge freedom of the Killing spinor equations. The
backgrounds that solve the Killing spinor equations for the representative spinors of each
orbit of Spin(d — 1, 1) in the spinor space are then related by a local Lorentz tranformation
to the solution for any other spinor in that orbit. An oscillator basis for the gamma-
matrices then facilitates the reduction of the Killing spinor equations to linear systems
for the spin connection and fields. To investigate solutions with more than the minimal
amount of supersymmetry one may then use the isotropy group of the first Killing spinor
to simplify the second, a process that may be repeated until the common isotopy subgroup
of the Killing spinors reduces to the trivial group.

In [2, 3] the Killing spinor identities were derived which relate components of the equa-
tions of motion of supergravity theories for backgrounds which preserve some proportion
of the supersymmetry. The derivation does not require that the supersymmetric action is
specified, just that the action is supersymmetric under the given supersymmetry variations
of the fields. In [4] the Killing spinor identities were used in the off-shell N' = 2 d = 5 super-
conformal theory to show that the maximally supersymmetric vacua of the two derivative
theory are the vacua of arbitrarily higher derivative corrected theories, up to a general-
ization of the very special geometry condition. However in that work the compensating
multiplet was taken to be an on-shell hyper-multiplet. We generalize the results of [4] to
the case of an off-shell compensator, extending the results of that work to arbitrary higher
derivative terms involving the compensating multiplet, an example of which is the Ricci
scalar squared invariant constructed in [5]. The previously constucted Weyl tensor squared
invariant [6] is independent of the compensator. Our analysis also extends that of [4] to in-
clude the gauged case, and thus AdSs vacua. We will also be interested in what the Killing
spinor identities have to say about solutions with less supersymmetry. The spinorial geom-
etry techniques allow us to use our simple representatives to show which of the (components
of the) equations of motion are automatically satisfied for supersymmetric solutions.

We will use the Killing spinor identities in order to study curvature-squared corrections
to N =2, D = 5 ungauged supergravity coupled to an arbitrary number of Abelian vector
multiplets. In particular we will focus our attention on a gravitational Chern-Simons term
of the form A A tr(R A R) where R denotes the curvature 2-form [6], and a Ricci scalar
squared term [5].

We will use the off-shell superconformal formalism on which there is an extensive lit-
erature. We will use mostly the conventions of [6-9]. The very helpful appendix B in [5]
provides a map from the conventions of [10-14] to those we use. Earlier work on off-shell



Poincaré supergravity can be found in [15]. There is also an extensive literature on off-shell
superconformal gravity in five dimensions in superspace, see [16-22] and particularly [23],
which contains the superspace contruction of the invariants we consider here amongst much
else. In appendix A we summarize the construction of supermultiplets whose supersymme-
try algebra closes without any reference to the equations of motion. These supermultiplets
can then be used to obtain supersymmetric actions with derivatives of arbitrary order
without making the supersymmetry transformations of the fields any more complicated.
Another advantage of the off-shell formalism is the disentanglement of kinematic proper-
ties (e.g. BPS conditions) from dynamic properties (e.g. equations of motion). The off-shell
formulation greatly restricts ambiguities arising from field redefinitions, such as

iy = G + ARG + bRy + ..., (1.1)

which plague higher-derivative theories in the on-shell formalism. In fact, the supersym-
metry algebra is not invariant under such transformations, even though the on-shell La-
grangian may be.

We shall be interested in the ungauged N = 2, D = 5 supergravities, and so we will
appropriately gauge fix the superconformal theory similiarly to [6], see also [24], however
we will use an off-shell compensating linear multiplet, as in [5]. This allows us to be sure
that our results will hold even on the addition of invariants formed from the compensating
multiplet.

The supersymmetric solutions of the minimal ungauged two derivative theory were
classified in [25] and the generalisation to a coupling to arbitrarily many Abelian vector
multiplets was reported in [26, 27]. The supersymmetric solutions of higher derivative
theory have been considered before. In, for example, [28-32] a variety of ansatz were
considered, whilst in [24] the classification of the supersymmetric solutions was presented,
following the two derivative analysis of [25]. We will reanalyze these results making use
of the Killing spinor identities, and give the full equations of motion that remain to be
solved in a compact form, for the time-like class. We will show that the Ricci squared
invariant does not contribute to any of the equations of motion either in the time-like or
null classes of supersymmetric solutions, and so that this classification is valid also in the
presence of this invariant. The supersymmetric near-horizon geometries of this theory were
classified, up to the existence of non-constant solutions of a non-linear vortex equation
in [33], assuming that the horizon is Killing with respect to the Killing vector coming
from the Killing spinor bilinear. If such solutions exist, they fall outside the classification
of [34], are half supersymmetric and may admit scalar hair. In [35] it was shown that
this equation does indeed admit some non-constant solutions. It would be particularly
interesting to construct explicitly such near-horizon geometries and the corresponding full
black hole solutions, or, on the other hand, to extend the uniqueness theorem of [36] under
some regularity assumptions. This work, when combined with the results of [33, 35] offers
some necessary ingredients to pursue this.

The structure of the paper is as follows: in section 2 we review the derivation of
the Killing spinor identities [2, 3] and fix our conventions. In section 3 we derive the
particular Killing spinor identities for off-shell N' = 2, d = 5 supergravity with Abelian



vector multiplets. In section 4 we then review the classsification of solutions of the Killing
spinor equations at order o/ in the time-like class for particular four derivative corrections
to the two derivative action and the implications of the Killing spinor identities for the
equations of motion of these solutions. This classification is also valid for any off-shell
N = 2, d = 5 theory constructed using the standard-Weyl gravitational multiplet and
with the same matter content if we consistently truncate all of the SU(2) triplet fields, the
scalar N and the vector Pu-l In section 5 we consider the maximally supersymmetric cases
in the time-like class and we reproduce the classification of [25, 37], which is simplified
considerably by using the spinorial geometry techniques. In [25] a number of maximally
supersymmetric solutions were found in the time-like class that were conjectured to be
isometric to the near-horizon geometry of the BMPV black hole, and were indeed later
shown to be so in [37]. Here we obtain this result directly by analysing the Killing spinor
equations. In section 6 we show that the Ricci squared invariant does not contribute to the
equations of motion for the null class of solutions, in a simple calculation using the Killing
spinor identities, without going into the details of the resulting geometry. In section 7
we extend Meessen’s argument [4] to include an off-shell compensator in the construction,
using the untruncated version of the off-shell theory, necessarily also considering the gauged
case. In appendix B we give the necessary information on the description of the spinors
of this theory in terms of forms, and find representatives for each orbit of Spin(4,1) on
the space of spinors. We introduce a basis (B.45) adapted to the case of time-like spinors,
and use it to derive linear systems from the Killing spinor equations for a generic spinor in
appendix C. In appendix D we give the linear systems for the Killing spinor identities in the
time-like (D.1) and null (D.2) bases, the latter using an adapted basis detailed in (B.47).

2 Off-shell Killing spinor identities

We now recall the general derivation of the Killing spinor identities [2-4] and fix our
conventions. Let S[¢y, ¢f| be any supergravity action, constructed in terms of bosonic
fields ¢ and fermionic fields ¢¢. Let us further assume S|y, ¢¢] is the spacetime integral
of a Lagrangian density:

Slew, d7] = /ddx\/§£[¢b, o). (2.1)

The invariance under supersymmetry transformations of the action can be written

0 = 605(0y, df] = / 0[5 { Lol 6110000\0m d7] + L1lbn, 6510brlbn 0s1) . (22)

where g denotes a local supersymmetry transformation of arbitrary parameter, subscripts
b, f denote functional derivative with respect to ¢y, ¢ respectively, and a sum over fields
is understood.

Next consider a second variation of the action functional by varying dgS|[¢p, ¢ 5] with
respect to fermionic fields only. Since dgS[ds, @] is identically zero for arbitrary ¢, ¢y,

Note that this immediately excludes the gauged case, as it is the field VJJ that enters into the gauge
covariant derivatives and is set to a combination of physical vector multiplets through its equation of motion.



we have

6QS|dv, ¢f + drdy] =0, (2.3)

and we set the fermions to zero after the variation. Hence we get

6r6QS|y,—g =0 (2.4)
= [ a1 |(Gr) o) + LulGriqnn) + (GrLs) dads) + Ly(Grdgs,)
¢r=0
Since dg¢p and L are odd in fermions we are left with
[ /gl (€u(6es0n) + (Grs) 00 )ly, o =0 (2.5)

Calculating (6pLy)e ;=0 requires knowledge of the entire Lagrangian, not only its
bosonic truncation. However if we restrict ourselves to supersymmetry transformations
having Killing spinors as parameters, dx, we have

(Brbs)oy—0 = 0. (2.6)

Note that
1 0S[gy,dp] 1 6SB[dw] 1 0SF(dw, ¢y]

p = = =+ , (27)
Vgl 0% Vigl 0% /lgl 0%
where the last term vanishes if ¢y = 0. We are thus led to define
1 3Sg[¢y]
&= —— 2.8
VTR 2%
so that bosonic equations of motion take the form

E=0. (2.9)

Thus the Killing spinor identities may be written as

/ddm\/m gb(5F5K¢b)¢f:0 =0. (2.10)

We will now derive the Killing spinor identities for off-shell N' = 2, D = 5 supergravity,
which have been discussed in [4]. We discuss the construction of such superconformal
theories in appendix A.1 and their gauge fixing to Poincaré supergravity in appendix A.2.
What we need are the off-shell supersymmetry variations for the bosonic field content, and



we record the relevant terms for our discussion here for ease of reference:

dey, = —2iey Yy,
1.
6vab = _§Z€7abx +---,

0D = —giéfy‘“'xv,w — &YV ux + i@y Vi — BEI(E + N) Lz + gE”yaV/ainJ +--,

5V = _%’g(iwxj) bl

0AL = —2iey, Q + -,

SMT = 2ie”

5Yﬁj = 2iE(i7aVan)I — 2iE(i7aVa j)kaI — %Vak(ia(%ﬂj)l — %E(ivabvabﬁjﬂ — %.E(ixj)MI,
ON = %Lijgixj . (2.11)

In the above we have supressed terms involving the gravitino, and in particular have
not listed the variation of the auxiliary vector P, as it only involves the gravitino. This is
due to our taking the strategy of solving the equations of motion of all other fields before
turning to solve the Einstein equation. Because of this the only term involving the gravitino
that will not lead to a term involving an equation of motion of a bosonic field that we have
solved will come from the vielbien variation. As to be expected from the complexity of
the Einstein equation of higher derivative theories and the ubiquity of the gravitino in the
supersymmetry transformations, if we keep these terms we may obtain long expressions for
the components of the Einstein equation in terms of components of the other equations
of motion and the fields. However as long as we keep in mind that our gravitino Killing
spinor identity is only valid after solving the other equations of motion, we may proceed
by ignoring the gravitino terms in the above variations, greatly simplifying the derivation.
So if we set £(e)h = ﬁ%, we get

E(e)lnaé =0. (2.12)

other bosons on-shell
To proceed we will need one more ingredient, the gravitino variation which reads
PTIR S abi 1 ab
% = v,ue + 57,uabv € — §7u7abv
i 1 - 1 i
+ Ve + 5P + N)LYg — 297" V'de = 0, (2.13)

where V;j =V, L[V + V’B so that V’ELij = 0, since L? := L;;L¥ = 1 from the gauge fixing
of the superconformal theory down to the super-Poincaré theory, which is discussed in
section A.2. We define the same splitting for any SU(2) symmetric field AY, in particular we
define A = ALV 4+ A"V 5o that A’ ijLij = 0. It will be useful to derive the following identity
for SU(2) symmetric fields. Consider two such fields AY, BY. We may easily show that

2AlKpY = 4B = (AB + A'a Bl (2.14)



We also note the identity . .
LyyA™B] = LA™ B, (2.15)

which clearly vanishes for A = B.
Let us now write the KSI associated to a variation of gauginos. We set

1 68 1 68 1 69
E(AW = — EM) = ———— | EV)pj = ——=—=om,  (2.16)
T Vgl 6AL Vgl oM! VR e
and have therefore
0= / d4z\/|g| [E(A)f; (—2z‘€iw) + E(M)1(2i€) + E(V) i (28 )y VK (2.17)

2i o G i . G
+§Z€(Y)’Iijk€j’ya - &)Y (;Ejv bvab)] 00 + E(YV)Y(2ig7") V169 .

Integrating by parts and using the fact that the gravitino Killing spinor equation implies

. . y 2 i .
VIV € = 2(1} cy)et =Y VoLV + gv’ T Va€j — %(P + N) LY, (2.18)
we obtain
5 .
0= [E(A)ﬁf'yu —&(M); + ﬁa’(Y)(J}f’ +2V + N)} e (2.19)

+ [(vae(Y)zij) Ya = %5(1”’)}“(%’ +2V + NI} — € (Y>zij¢] G-

Next we consider the KSI associated with the auxiliary fermion. We define

1 68 1 48 1 68
gyt = =25 gpy= 5 gy L0
Vgl 9Vab Vgl 0D Vgl ON
1 48 1 68
E(P) = ———, E(V)E = — (2.20)
Vgl 0Fa VAT
and thus obtain
5 oo \aboi , S ovapi b ab_i
0= /d zv/ |9 [—88(0) €Yap — 1E(D)Ey, VL5 — §S(D)v €'Yab
i y ; di 5 4i o 0 i i i gl
+6£(D)€J(P + N)Lj — E(D)gﬁ‘lvlad’}/ —+ ZS(V)MjGJ’)/M + ZE(Y)IJE‘]M
i i .
—25(N)Lj} Ixi + [—i€€(D)Y] V,.0x . (2.21)

Integrating the last term by parts, discarding the total derivative and making use of the
gravitino Killing spinor equation we obtain

: . i i1 i 1 N
0= |:8<€(U)ab + QE(D)Uab] ,yabfl + VQE(D)’)/aél . zg(V)g’yaﬁj B ZE(Y)?MIEJ

+2E(D)V'Iy%; + %S(N)Lijej — ED)(P + N))LV¢;. (2.22)



In order to use these equations we need either to solve explicitly for the Killing spinors
or better to find representatives for them for different (classes of) solutions. Our strategy
will be to expand the Killing spinor identities in suitable bases for their solution using
the spinorial geometry techniques. It is especially easy to solve these system as we have
already reduced the system to equations that are algebraic in the Killing spinors, using the
gravitino Killing spinor equation.

In the two derivative ungauged on-shell theory with Abelian vectors all supersymmetric
solutions (locally) preserve four or eight supersymmetries. However this is no longer a
priori true in the off-shell theory unless the auxiliary SU(2) fields vanish. Because of this
it is possible that a number of new features arise in the off-shell case in theories with
suitably complicated actions which are normally associated with higher dimensional or
gauged supergravities. Note that the Killing spinor identities derived above will be valid
for supersymmetric solutions with the appropriate number of Killing spinors, i.e. spinors
which satisfy all of the Killing spinor equations. This is due to the implicit sum over fields.

3 N=2, d=5 ungauged supergravity with four derivative corrections

We review the construction of the superconformal Lagrangian in appendix A.1, and the
gauge fixing to Poincaré supergravity in A.2. We do not break the R-symmetry down to
global U(1), which could be achieved by choosing a particular value for LY,

Now we will specialize to a particular consistent truncation that is sufficient to study
first order perturbative string theory corrections. In particular we remove terms in £4 that
do not contribute to linear order in o using the two derivative equations of motion for
the auxiliary fields. In particular note that since Vﬁj, Y1 N, P, have trivial equations of
motion at the two derivative level one can write for example Vﬂi' = O(d/). However the
corrections to these equation of motion are themselves of order o/ so in fact

Vij — O(O/)2, YIij — O(QI)Q, N = O(O/)2, P,u — O(OL/)Q ) (31)

Due to this we may truncate them from the action and the supersymmetry tranformations
when studying the perturbatively corrected four derivative theory at first order and to all
orders in the consistent truncation. In [4, 24] only higher derivative terms independent of
the compensator were considered, and the above statement follows for the fields VU, y /i
as they could only couple to each other in the action, and have trivial equations of motion
at two derivative level. However in invariants involving the compensator, one must check
that these fields are in fact higher order, as they could appear contracted with LY. Clearly
the order of the fields N and P, must also be checked. However an inspection of the
Ricci scalar squared superconformal invariant (A.51), assures us that these fields are in
fact O(a’?). We would like to emphasize, however that this may not be the case with all
invariants involving the compensating multiplet, and must be checked.

The resulting Lagrangian of R? corrected N = 2, D = 5 ungauged Poicaré supergravity
coupled to Abelian vector multiplets is given by

L=Ly+Ly. (3.2)



At two derivative level we have

1 1
Lo=Ly+2L1 = §D(./\/’ —-1)— fR(./\/’—F 3) + v2(3/\/+ 1)+ QN]UabFC{b—F

1
+N[J < Flab vaMIvaMJ> ﬂCIJKe —1 abcdeAIF Fde ,

(3.3)

abede - Note the sign of the scalar kinetic term

where the Levi-Civita symbol is denoted by €
which corrects that in eq. (78) of [24].

As far as the four derivative Lagrangian is concerned we will take £4 = L2 + Lp2,

where
Car |1 1 abede 41 fo Lyt abed
£C2 = ﬁ {166 €™ eAaCbCfnge g + gM c*e Cabcd+
1 172 1 ab 1 ab, . .cd 1 Tab, cd
2M D +6D1} Fb+3M Coapeav™v +§CadeF v+
8 16 2
+5M Loy VOV 0% — ngv“bvbcRac — §Mfu2R+
4 4
+ ng Vo 0pe Vo0 + ng V o pe V0 +
2 2
_ nge_leadeevabUcdvaef + ge—leabcdeFI Ucfvade+
4
+ adeeF b’Uchd'U BFaIb'Uac’Ucd'U — gFIb’Uab'UCd’U +
+ AM T w0 "vqv?® — M v bvcded} , (3.4)
where C' denotes the Weyl tensor and we are using the conventions R,,,” = —QB[NFZ’: o T
2F[TM|U )y B = R,p.” and
2 1
C;wop = R;U/Up - g(g,u[oRp]u - gu[oRp],u) + gRg,u[crgp]u ) (3'5)

which are different to the conventions in [6]. In A.3 we give the contributions to the
equations of motion for this contribution to the action, which are quite involved.

For the Ricci tensor squared contribution one finds

2 4 2
—1 _ “ 2

where we have absorbed a factor into the definition of £& = e; M’ and we also provide the
contributions to the equations of motion in appendix A.3, which are rather simpler.

In order to solve the Killing spinor equations to order (') or to all orders in a consistent
truncation, we may remove the same fields from the Killing spinor equations and identities



which now read
1

.M 1 .
Vuel + [27,uabvab - g%f}’abvab € =0,

1 1 1 1.
[—4FL{b'y“b — 57“8HMI — ngvab'yab € =0,

3 3

8 2 1 .
|:D . 702 + <2vbvba . eadeevbcvde) Yo + Eabcde,yabvcvde = 0,
E(e)Z’yaei =0,
[E(AYf — EM)] 6 =0,

1 1 .
[SS(U)ab + §E(D)vab Yap€ = 0. (3.7)

In appendix C we give the linear systems associated to the Killing spinor equations in a
time-like basis, whilst for the Killing spinor identities we present the linear systems in the
time-like and null bases in appendices D.1 and D.2, respectively. These bases are adapted
to the time-like and null orbits of Spin(4,1) on the space of spinors which can be found in
appendix B. In the next two sections we shall use these systems to analyse the equations
of motion of the truncated theory, which is sufficient to study the order o/ four derivative
corrections to the ungauged theory.

In the interests of completeness we give the full form of the KSI for the gravitino for this
truncation, which we calculate using the full supersymmetry transformations in [7] to be

1 1
(O (26) = E(ANEM' +£(0)" (Guaer~ guatent §Vier

+E(v) (vabe%—i—gvae— ivbe%b) + V. E(v)™ <§e> +VbE(v)™ (—Ze%b)

2 22
+E&(D) <4€vab“ — 2e“def9€vdevfg + <D — 31}2) eYh+ gvabv“bﬁa

— 26def9hv€fvgh€’y“d — 2V“vab€'yab — 4V“vba€'yb“ — 4VavubEfyba
3
+ 12V (v,1€) — 4V (v"0&v,p) +4V“(vabe’y“b)> + V€ (v)®P <46'ya“>

+4V9E(D) (3vMe—v"0Ey 4y +vapEyt) . (3.8)
We can then write this in terms of the variation with respect to the metric using

65[6Z7vab7D7A,{nMI} _ 2 A(/J, V)(SS[gIJ«V3UHV7D7A;IuMI] b 6}\ 6S[gMV7vﬂV7D’A,{uMI}
des =729 ¢ ogHv (1] ol ’

— 2Ugp€

(3.9)
We will not find this expression particularly enlightening in what follows.

4 Half supersymmetric time-like solutions

In the section we shall analyse the supersymmetry conditions arising from the existence of
one time-like Killing spinor and reproduce the results of [24], which we will add to in the
next section by examining the Killing spinor identitities and equations of motion of the
theory considered there with the addition of the Ricci scalar squared invariant.

~10 -



4.1 Killing spinor equations and geometric constraints

Let us turn first to solving the Killing spinor equations. We shall see that demanding
one supersymmetry leads to 4 out of the 8 possible supersymmetries being preserved. It
is convenient to work in the oscillator basis defined in (B.45), whose action on the basis
elements is recorded in table 1. The Killing spinor equations have been expanded in this
basis to yield the linear system in appendix C. For the representative of the SU(2) orbit of
Spin(1,4) we may always choose (cf. eq. (B.39))?

€= (', €?) = (21, —ie®e!?) . (4.1)

Inspecting the linear system in appendix C it is easy to see that the two components of the
spinor yield equivalent conditions. Now consider the spinor n = (n',7?) = (—ie®e'?, —e? 1).
This is clearly linearly independent from e, however it yields an equivalent linear sys-
tem, thus the system preserves at least two supersymmetries. In fact the system pre-
serves half of the supersymmetry, as the spinors y = (ie!, —ie?) = (iel, —e®e!?) and
¢ = (in', —in?) = (e®e'2,ie?1) also yield identical systems. To summarize, demanding the
existence of one (time-like) supersymmetry implies that the solution is half supersymmetric
and it is sufficient to solve the Killing spinor equations of the first component of that spinor.
From the gravitino egs. (C.7) we obtain

3 3 3 3 5
Oy =0, Wa,12 =0, Voo = —§8a¢ T yM00e = _iwmv - —§LL)B’12€'BQ,
3 3 1 1
Uaﬁ = —5(,4.)070(,3 = —§WQ,OB7 V13 = _§w1,0§ = 5&)2701 ’
3 3 3 5
vy = —iwo,v’y = —iw%ov, 2011 — vy = “o%ols Uit — 2093 = 942,02 (4.2)

where €,4 is antisymmetric with €;2 = 1. From this we can easily read off the geometric

constraints
0o = wa,12 =0, (4.3)
Wijolj) =0, (4.4)
worT = wyo” (4.5)
Wo,a8 = Wa,08 ; (4.6)
2006 = Wo00 = 2War” = 205 156 a - (4.7)

Consider next the one-form bilinear V' = e??e constructed from the spinor (4.1). V is
clearly time-like and it is easy to show that (4.4) and the first equation in (4.7) imply that
it is Killing. We can thus introduce coordinates ¢, ™ such that

)
V=2 (4.8)

2 As discussed in appendix B, there are two different representatives, one for each of the different SU(2)

orbits, which are related by a Pin transformation. The results for the representative of the other SU(2) orbit
are closely related to what we shall find for the representative we consider here, and we shall summarize
the results in section 4.4.
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as a vector. The metric takes the form

ds? = e (dt + Q)? — e 2 g da™da™ (4.9)

and we may adapt a frame such that dsZ = (e°)? — ds? = (?)? — Ay e'e?,

¥ = e2(dt +Q), el =e e da™, (4.10)

where 7);; denotes the flat euclidean metric, €' is a vierbein for g and ¢,w and e’ are

independent of ¢. Next consider the torsion free condition for the fiinfbein e4,

de? + wByACeB Nel =0. (4.11)

In particular setting A = i and considering the part with either of B,C' = 0 we find
conditions compatible with the constraints (4.5) and (4.6), but in addition this implies
that the trace free (1,1) part of wg;; = w;o; must also be satisfied. It is convenient to
introduce the two form G,

G = e2%dQ). (4.12)

Then the components of the five-dimensional spin connection are

wo0i = 2e"Vip,  woij = wioj = _%Gij ;o wigk = —€? <<f)zyk - Qﬁi[j@k}(b) ;

where hats refer to four-dimensional quantities and we note that all components are de-
termined in terms of the base space. We can see that this means (4.4)—(4.6) and the first
equality in (4.7) are satisfied, and it remains to interpret (4.3) and the remainder of (4.7).
Examining the first of these we see that wy,12 = 0 implies that the (3,0) + (0,3) part
of the connection vanishes, and thus the complex structure is integrable. The remain-
ing conditions can also be expressed in terms of the Gray-Hervella classification for an
SU(2) structure manifold, and it can be seen that the manifold is in the special Hermitian
class [38]. We will not pursue this here, as we shall show instead that the base space is
hyper-Kéhler, i.e. we will describe it instead via its integrable Sp(1)(=SU(2)) structure.
We can now write v as

1 o
v = v9ae’ A e® + v9ze’ A e® + 3 (vageo‘ AeP + va/;eo‘ A 66)

+ 6,505 7€% A ed + (Vap — Oa50y7) € A e’ (4.13)

where the (1, 1) piece with respect to the complex structure has been split into its traceful
and traceless parts. It is convenient instead to decompose the spatial part of v into selfdual,
vT, and antiselfdual, v~, parts. Note that the nonzero components of the decomposition
of a two-form « in the oscillator basis are

1

+ " N .

oy = gl — am) oy =z, ol =ap, o) = —5lonr —ag),
1 B B o

o) = Sl tay), o) =an,  ap)=ap.  ap) = (e tag),

- 12 —



so that with respect to the complex structure a* is the trace-free (1, 1) part, whilst o~ is
the (2,0) + (0,2) part and the trace. We observe that we may thus write

+) _ 1A (=) _ 3 A)
v = ZGij , v = ZGU , (4.14)
so v is given by
_ 3.0 Lo 23000 23,50 _ Lo
v=-—ge A do + 4G + 4G = 4de 2G . (4.15)

The two-form bilinears of the spinor (4.1) are

XM = —e2(et Ae? + el A ej) ,
X® = —je??(e! ne? — el A ei) ,
X®) = el Ael + e A e?). (4.16)
Notice that the constraints on the connection imply that they are closed, since dX® = 0
is equivalent to demanding
2V = (%,oi + w2,0§) — (o1 + woﬂ) =Wy 0T T Wio1 = Wo 03 T W02
wo,12 = W1,02 5 wi,02 + w201 =0, wa,12 =0,
Vig = WiaT T W13 = W3 125 Vag = Wo 1T T Wo 93 = —WT 125 (4.17)

which are all implied by the gravitino Killing spinor equation. Defining

X=X (4.18)

such that X Z-(}) are the components with respect to the vierbein é,

1 N . 1 ) ) ) 1 A0 ;
S X Nl = S(XeNE N = SRPE N, (4.19)

we find that the X obey the algebra of the imaginary unit quaternions,
XOX0) = — 5,0+ e X ™. (4.20)

This defines an almost quaternionic structure on the base space. If they are covariantly
constant they define an integrable hypercomplex structure on the base, so we examine

A

vx® =0, =123, (4.21)

which is equivalent to demanding

wa1T+wa2§:O ) Wai2 =0, waﬁ:(]?

which are again implied by the gravitino Killing spinor equation. We thus conclude the
base space is hyper-Kéahler. Note that the spin connection and the curvature two-form on
the base are selfdual, obf;,i = RZ(;) = 0.
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We turn next to the gaugini equations. For our representative, the linear system (C.10)
boils down to

oM =Flog=F =0,  o0aM'=4Fj,. (4.22)
Thus we have
I I 4.7 I I(-) 451 (=)
OgM* =0, Fy, = —§M vo; + ViM* Fij = —§M I (4.23)

We can eliminate v to find

Fl =720 pq(M!e??) — M'GE) 4 FID)
= —d(M'e%) + MIGH) + FIH) | (4.24)

where the selfdual part of F' is undetermined. Note that
ViF! =d(Mmie?), (4.25)

which, together with the Bianchi identity, implies that the Lie derivative of F! along V/
is zero,

LyFl =d(ViFh) +VidF! =0, (4.26)

and thus F!, including its undetermined part, is independent of ¢. Since
dFT = dM!' A G + MTdGH) + dF!H) | (4.27)
the undetermined part of the field strength satisfies
dF'™) = —dm! A G — MTaGgH) (4.28)
Let us introduce the selfdual two-form
o' .= Mg + FIH) (4.29)
so imposing the Bianchi identity for F! is equivalent to demanding
de’) =o. (4.30)

We now turn to the auxiliary fermion Killing spinor equation. Next we wish to sub-
stitute for v in terms of G and ¢. Carefully evaluating the covariant derivative of v
we obtain

L L sy . L(0) . A

Vovo; = 2¢*%0, V!¢ + §€3¢Gilv(0)l ; Vv = 462%[(1; )Vj]¢ + oGy

~A R ~ ~ N o A 1 oA
Vk’l}()i = €2¢Vk1]§0) + €2¢Ul(€0)vz‘¢ + €2¢U,§O)Vk¢ — €2¢77ik1]l(0)vl¢ — §€4¢’01'le ! s (431)
i

Vkvij = €3¢@k@ij + 2€3¢@ij@k¢ + 263¢@[i|k@j}¢ + 2€3¢ﬁ[i|k@j]l@l¢ + esd)f}[(o)éj]k .
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Using this the expressions defined in (C.15) become

A=D = 3G GO — LG G0 329% 1 186%(Vo - V6)

2
i le A _ 1e A _ Aldie A(—)ji
Al = 3¢3? §VjG(+)J — §ng( )it _ Q)i quH—G( )i V6|,

A =0. (4.32)
Recall that in four dimensions for a two-form « we have the identity
Vol = (xd % a)" | (4.33)

so A’ is proportional to the Hodge dual of the 3 form d (e*Z‘z’G), but G = €2?d), and hence
A = 0. Using this together with A% = 0 in the linear system (C.14), one sees that the
latter is satisfied iff A = 0. Thus the only additional condition arising from the auxilary
fermion equation is an expression for D,

D= %e‘w’é(*) GO 4 %e‘*‘ﬁ(;(*) CG) 4 3e20V2 ¢ — 18624 (V )2 (4.34)

4.2 Killing spinor identities and equations of motion

Here we will examine the equations of motion using the Killing spinor identities in the
time-like basis, given in section D.1 for the representative (4.1). We obtain

EA)Y—EM) =0, EA);=0,

<15(v) + €(D)v> aa + V(D) =0,

4
1 0i i
(45@) + 8(D)v> —ViE(D) =0,
1 12
(48(1}) + E(D)v> =0, Ele)h =0. (4.35)

Note that as the KSI are a consequence of the off-shell supersymmetry, these are valid for
all higher order corrections that can be added to the theory with the same field content,
i.e. for any consistent truncation in which the SU(2) triplet fields in addition to N and
P, are set to zero. In particular for any such corrected action, including the one under
consideration, it is sufficient to impose the equations of motion

ED)=0, EwHi=0, EM);=0. (4.36)

Consider the contribution to the equation of motion coming from the Ricci scalar
squared action. Looking at the equations of motion coming from this invariant, we see
that the contribution to the gauge field equation of motion vanishes. But we know from
the Killing spinor identities that £(A)% = £(M);. Looking at the scalar equation we read

off the identity
4 2
R=_—v?>—--D?

4.37
S0P - 2D, (437)
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where these quantities are all defined on the full five dimensional space. Using the condi-
tions we have found on the geometry and the expressions for the auxiliary fields we can
verify this identity directly. Turning to the contributions from this density to the other
equations of motion, we see that they vanish identically for any supersymmetric background
in the time-like class.

The equation of motion for D is therefore given by

_ Lo e 2 |1 ogr 1 (LA A4 L AC) . AC)
0—2(/\/ 1)+486 |:46 M 3G G+ G G

1 ) . . . . . .
+ E62¢>G<+> O 4 MIN?G 4+ V- VM —4AM V- v¢] . (4.38)
The M! equation is more involved, but using (4.31), and the various identities we have
collected in appendix E, we find

1 A A A
0=e¢t |:4C]JK@(+)J LK _ 2 (e_g(f’./\/})} +

el ag fo2 (oo s Lo 2sp2 L oge 1
+ e {v <3v¢ Vo — 3G - G ) + 5

RWRW} . (4.39)
This computation has been checked in Mathematica using the package xAct [39, 40], and
the two equations above are in agreement with [24].

Finally, after a very long calculation and making extensive use of the identities in
appendix E we find the equation of motion for v yields

0= —462¢é§;r) + 26%/\/]@)5*)

car [1 g4 (120 A AT L ag (0 1A | oAl A K
4o [ (A=) LA | L ose2 [ 6sal(+)] 4 dod ¢ 1Ak
+e*?V [M <Gij 3Gij )] 66 \Y% |:6 @ij } 4e V[ka {M G j]}}’

where we have substituted for A/ using the equation of motion for D. To obtain this we
found it useful to consider the equation

EW)ap + 4kE(D)vay = 0. (4.41)

We have checked the KSI for this equation explicitly and indeed the electric component
and the anti-self-dual component automatically vanishes for k£ = 1, so that these parts of
the £(v)qp are automatic up to solving (D). It is then sufficient to solve the self-dual part
and taking k = 9 gives the equation above. This equation was not given in full generality
in [24], where the equation of motion was contracted with G*. Note that the covariant
derivatives on the last term commute, and that whilst ©! is harmonic with respect to the
form Laplacian, it is not harmonic with respect to the connection Laplacian and instead
obeys (E.31). Finally note that this equation is selfdual as the antiselfdual part of the last
term and the manifestly antiselfdual term VM7 @l(;) cancel using the identity (E.38).
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4.3 Towards general black hole solutions

In this section we shall comment briefly on solving the remaining equations of motion,
in the case that the solution is a single centre black hole with a regular horizon. In [33]
a systematic analysis of the possible supersymmetric near horizon geommetries of the
five dimensional theory inculding the truncated Weyl-squared invariant was performed,
assuming a regular compact horizon, regular fields and that the horizon is Killing with
respect to the Killing vector assocated to the Killing spinor bilinear. In the case of horizon
topology 5% it was found that the geometry may be squashed if a certain vortex like
equation admits non-constant solutions. Whether there exist squashed solutions or not,
following the analysis of the two derivative case in [36], it was demonstated that for a
supersymmetric black hole the geometry may be written as a U(1) fibration of R*, and the
6! must vanish under some regularity assumptions. So to investigate the supersymmetric
black hole solutions with regular horizons one may always take Rijkl — © = 0. This means
that (4.39) may be solved for a set of harmonic functions on R* which we label H;

Cor ~ 1 N 1 N
PHr + Ni = -5 136°(V§)® — ™Gl — G ¢ (4.42)
24 12 4
Contracting this with the scalars and using it in (4.38) we find

e 20(1 — 4N) = HiM! + %f {MIN% +(V)?) = V- @Mf} . (4.43)

The v equation also simplifies to yield

_ 20 A(+) | C2I | 4¢e2 I A(—)_EA(-‘F) A0S ¢ I Ak
0=—4eG)+22 {e \Y [M (Gij 304 )} 1649V, vy (MG ﬂ}}, (4.44)

We note that at two derivative level G+ vanishes, and can thus be dropped from the
correction terms to the equations of motion to order o/. Making this assumption the above
further simplifies to give an expression for G™ in terms of second derivatives of M! and o,
and dw™. Note that the Laplacian of M7 GO only occurs to cancel the antiselfdual part of
dK~, where dK~ is defined as in (E.38), with a = M!@G. One would perhaps expect that
G will only be non-zero in the case that the horizon is squashed, corresponding to the loss
of two commuting rotational isometries. It would be especialy interesting to investigate
this further, and also to use the analysis of [33, 41] to investigate the black ring solutions,
and we hope to report on these issues at a later date.

4.4 The second time-like representative

As is discussed in appendix B there is a second orbit with isotropy group SU(2) in the
space of spinors. This is related to the first orbit by a Pin transformation that is not in
Spin, which is thus associated to a reflection, rather than a proper Lorentz rotation of the
frame. In this section we will briefly give the solution to the Killing spinor equations for
a representative of this orbit, which are of course very similar and which may be read off
from the general linear system presented in appendix C.
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The first component is given by ! = e?e!, and again inspecting the linear system we
see that if it is satified for this component of the spinor, then it is automatically satisfied
for the second component €2, and indeed for the four linearly independent spinors with

2 1 ;.2

first components €', €2, ie!, ie2. The one-form bilinear of the representive is the same as

in the case of the first orbit, and the associated time-like vector field is again Killing so
we may adapt the same coordinates. The non-zero components of the spin connection are

antiselfdual, d}l(jlz = 0 and thus Rl(;r) = 0. The two-forms associated to this representative

are different, and are now selfdual,

XM = —e2(e! A e+ el A e?),

X@ = 4ie?(e! A e —e' A e?),

XO) = 4ie?(e' nel — 2 A e?). (4.45)
They are closed, and induce endomorphisms X' on the base space, defined by (4.18). The

X satisfy (4.20) and (4.21), so one has again an integrable quaternionic structure, and
thus the base is hyper-Kihler. The gaugino equation (C.10) gives us an expression for F/,

Fl = —e7200 Ad(MTe??) + MIGH) + FIC)
=d(M'e®) — MTGH) 4 FI) (4.46)

where now it is the antiselfdual part of the flux which is undetermined. Thus we define the

closed form
ol .= i) Mg, (4.47)

and again, using the Bianchi identity, this is independent of ¢.
From the auxilary fermion equation we just get the same expression for D, after inter-
changing G*.

D= %ew;(—) NeComn g@wé(ﬂ G 4320V — 1867 (V) . (4.48)
In this case the independent EOM’s are
E(D)=0, EM)=0, Ew)T=0. (4.49)

The first equation gives

Ll el os sy e am e a0
0—2(N 1)+2426 |:46 M\ G G +3G G
G OO L MV VoYM —AM Vo @4 o (450)

whilst the second equation reads

1 ~ A ~
0=¢ |:4C]JK@(_)J . @(_)K —Vv? <6_2¢N]):|

|

1 4 [e2 (oo, o L 26a2 1 oga0
+ 2 {v <3v¢-v¢ G = G ) +

RWR"W} : (4.51)
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The auxiliary two form equation of motion is
0= —4e*GH) +2e2 N6
51 {1 6¢< Gty + G >)
e [MI <é§j+> - ;é<.>>
which is antiselfdual.

5 Maximal time-like supersymmetry

In the consistent trunaction we are considering it is clear that we need only demand two
linearly independent Killing spinors to impose maximal supersymmetry. We include this
derivation here, as it is rather more direct than that presented in [25], which left some
solutions only conjecturally isometric to the near horizon BMPV geometry, and these
conjectures were subsequently proven in [37].

5.1 Killing spinor equations and geometric constraints

In the previous section we have only imposed the existence of one time-like Killing spinor,
so we wish to choose a second Killing spinor. Decomposing A¢ under SU(2) we find

Ac =C(1,e?) + C (el e?). (5.1)

Note that for linear independence the second spinor must have a component in C (e!, e?),
since we have seen that the spinors implied by the existence of one spinor span C (1, e!?).
Now notice that we may act with the residual SU(2) gauge symmetry to write the spinor as

El=N1+0e'? +eXel, (5.2)

where y is real. So choosing this as the first component of a symplectic Majorana spinor
we have
£=(\1+oe? 4 eXelio* 1 —iX*e!? +ieXe?). (5.3)

Recall that the linear system is equivalent under the symplectic Majorana conjugate, in
fact it yields the (dual of the) complex conjugate system. Thus not only is it sufficient
to consider the Killing spinor equations for the first component of &, but this implies that
the linearly independent spinor (£2,¢1) is also Killing. Now note that (i€!, —i¢?) and
(€2, —ig') are also linearly independent and their linear systems are equivalent to the sys-
tem from ¢!, Finally we note that the sigma group [42] of the plane of parallel spinors of
the half-supersymmetric solution, ¥(P) = Stab(P)/Stab(e, n, x, (), is a rigid SU(2), where
P = C (e?1,e%e!'?), due to the supersymmetry enhancement found in the previous section.
So to summarize, by demanding the existence of one time-like Killing spinor € we saw
that this implied the existence of another three linearly independent Killing spinors, and
when demanding the existence of one more linearly independent to these we have maximal
supersymmetry.
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First let us consider the gravitino equation. The linear system (C.7) for ¢! yields

4
V290 — X <w0,01 — o1

1

1
dox — (2 (Wo,ﬂ - W0,2§) 3 (17 — v92)

2

4
Wo12 ~ gl1z = 0, eX <W0,02 - 3002) + V2900 =0,
V20u X = V2X0a¢ — X (wa 01 + 20a2v12) =

1 1
—OaX + <2 (Wa,ﬁ - Waﬂ) + 351a001 + 5a2U02> =0,
2 2
We, 12 — §5a21)01 =0, Wg,12 + §5aivoi =0,
Y 2 2
eX | wa 02 — géalvli - §5a2 (17 + 2v93) | + V20,0 — U\/i(’“)aqb =0,

2 2
V205A — V20056 — €X ( wa01 + 5041 (2017 + Vo) + 2042013

3 3

1
—OaX + <2( 3,11~ Wa,22) + 0a1v01 + 5a2”02> =0,
X (wa 03 — 2041v13) + V2050 — V20050 = 0.

The first four equations give

V29\ = 421XV ¢, —V20p0 = 4e?TXV56, dox = GH) =

From (5.9) and (5.8), (5.12) we obtain respectively

Wy 13 =wWy12 =0, Wy 12 = —2Va0, Wy 13 =2V19,

DT — @102 = 2V10, Qg1 — Wy 00 = —2Va9,
From (5.7), (5.13) we get
Vi(e™®\) =0, Vale %) =0,
V2eXGy) = Vi(o%e?) = Va(Ae™?),

and finally (5.10) and (5.11) give

The gaugini equations (C.10) boil down to
VaM'=F' =0,

SO
Fl=2M " ndp — MTGE) .

—90 —

(5.4)
(5.5)

(5.6)
(5.7)

(5.8)

(5.9)

(5.10)
(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)



The Bianchi identity for F is therefore satisfied,
dFT = 2M'de® A dp — MTdG) = 0. (5.20)
We can write the auxilary fermion equation as
(B+ Biy)el =0, (5.21)
since eX is non-zero. Consider first the B¢ part, substituting .A* = 0 one gets
B = —4¢7 jupy = —6eijkle3¢@j(e_2¢G;l_)) =0. (5.22)
Thus the condition remaining from (5.21) becomes simply B = 0, which yields
0= 6e2? (@iwt — N@'W@) — 6V 20 (5.23)

Thus H = e~2? is harmonic on the base, whilst the expression for the auxiliary scalar D

becomes

D= ge4¢(é(_))2 —12VigV6. (5.24)

We note that as dQ = e~22G(7) is a closed anti-selfdual two-form, it can be written as
a constant linear combination of the hyper—Kahler two- forms on the base. As they are
covariantly constant with respect to the V connection, so is dQ). We can calculate (G(*))2
from (5.16), (5.17) to get

(G2 = Re(V\)?V;9V'¢ — 2Re(A\) ViV Re(A) + ViRe(A)V'Re()),
m(A)2V;¢Vip — 2Im(A\)V;pVIm(A) + ViIm(A)ViIm(N), (5.25)

with similar expressions involving o, where we have used the last equation of (5.15) to see
that e2(®+) ig just some positive constant, and moreover we can always rescale the spinor
¢ such that e(®+tx) =1/4,

The connection 1-forms @ are completely determined and to compute the curvature
two-form, it is convenient to write

= Vi¢ [M,M] + 2V29M , w1 = —Vi¢ [M, M] +2V36M
o = —Vap [M,M] —2V1¢M, &= V3¢ [M, M] —2VipM, (5.26)

—

where M, M, [M, M] are the linearly independent matrices (with index ordering (1, 1,2,2))

0 010 0000 ~100 0
§ 1 . 1
o [0 000 000y 0100 (5.27)
0 000 ~1000 001 0
0-100 0000 000 -1
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The nonzero components of the curvature two-form (with its coordinate indices flattened
with the vielbein) can then be written

Ryg = —e 20V Vee2® M + e 29V, Ve M — (Nﬁm - Ngwigb) (M, M],
RZQ = —6_2¢§1@262¢M + 6_2(15%1@@6%]\74 + (2@2§Q¢ — 4§1¢@1q§> [M, M],

ng = —6_2¢©2@262¢M — 6_2¢@1@162¢M — 6_2(;5@1@262(?[]\4, M] ,
—672¢@1@162¢M - 672(1)@@@@6%]\_4 + €2¢@1@Q€2¢[M, M],

=
=1
[\]]

Il

. 1 Aa ~ 1 ~ A _
Ry = _§e2¢v1vie—2¢M, Riy = _§e2¢v1vie—2¢M. (5.28)
Using the symmetries of the curvature tensor, in particular setting jo_) = 0 leads to
VIV;H L =0, i#j, VIVIH'=V,V2H !, (5.29)

and we find that the base space is locally flat, as we also have that H is a positive harmonic
function. We can write V2H = 0 in terms of H~! as

ViV;H ' 4+ 2B 'WV'HIV,H T =0, (5.30)
which allows us to rewrite the conditions on H in the concise form that appears in [25];
L 1 . .
—ViV;H ' + ﬁéijépqva—lqu—l =0. (5.31)

Solving this equation we have that H = k, or H = 7271297 where k is a positive constant and
7?2 = (21)? + - -+ + (24)?, and we have introduced coordinates such that the metric on the
base is d§? = 5ijdxidacj )

Let us first consider the case dH = 0. We thus have d¢ = 0, the connection and
electric parts of v and F! vanish, as does the auxiliary scalar D, and we have two cases
to consider, depending on whether G(~) vanishes or not. In the case G(~) = 0, all of the
gauge and auxiliary fields vanish, and we are left with five-dimensional Minkowski space.

Now let us take G(7) # 0. Setting f* = {Re(\),Im()\), Re(0),Im(0)}, we must have
ft# 0Vi from (5.25) and Jof* = 0 from the first two egs. of (5.14). Furthermore none of
the f* may be proportional. One can see this by making a (rigid) SU(2) transformation
in ¥(P). In the case that any two of the f’ are proportional, we may set one of them
to zero and hence obtain G(~) = 0, without loss of generality. G~ is now covariantly
constant and can be written as a constant linear combination of the hyper-Kéhler two-
forms, G(-) = ZE?)):(I) ¢ X @ This implies

VVfi=0. (5.32)

Hence a suitable solution for the parameters of the Killing spinors is f* = a’2? (no sum over
i, a* # 0 Vi) in Cartesian coordinates on the base, where a’ are constants and (a')+4--- +
(a*)? = G2 = 42%?)):(1)(0@)2. Following [25] we next introduce SU(2) right-invariant

(or “left”) one-forms Ug) on the base such that X = id(rQJ(Li)), where from now on
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we will leave the sum over (i) implicit. Introducing Euler angles for SU(2) 0 < 6 < T,
0 < ¢ <27, 0 <1 < 4m, which in terms of the cartesian coordinates are given by

0 i
z! +ix? = rcos §e§(¢+¢) ,
0 i
23 4 izt = rsin iei(wﬂﬁ) , (5.33)
these 1-forms have the parametrization

U(Ll) = sin ¢df — cos ¢ sin Od)
o\?) = cos ¢df + sin ¢ sin O,

o) = d¢ + cos Ocdip, (5.34)
and obey
i 1 v j
dU(L) _ _56(1)(3)(’6)0(5) A U(Lk) ) (5.35)
We can now solve for €2,
kr? () ()

Let us now turn to the case H = f—’g In this case we have V(HG(7)) = 0. We introduce

a new basis of anti-selfdual two-forms Q) = d(rfzag)), where Ug) denote SU(2) left-
invariant (or “right”) one-forms. In terms of the Euler angles these are parameterized by

ag) = —sinydf + cos ¥ sin Odo ,
ag) = cos Ydf + siny sin Bd¢ ,

US) = dip + cos0do, (5.37)
which obey
do'd) — %E(z’)umgg) Ao, (5.38)

Then writing GO = c(i)TQQ(i), we find

Q= %c(%g) . (5.39)

r2

The five-dimensional spacetime geometry is given by
r 2% o »\> 2k
ds* = (dt + >a§§> - 5 [ar® +r%a0s?] (5.40)

This is the near-horizon geometry of the rotating BMPV black hole [43]. Setting ¢V = 0
gives AdSy x S3.
In summary, we have the following cases:

e Five-dimensional Minkowski space. All coefficients of the Killing spinors are constants
and all auxiliary and gauge fields vanish.

~ 93 -



e The Godel-type solution [25]. The scalars are constant, dM I'= (. The base space is
R4, the electric parts of the fluxes vanish and d¢ = 0. The metric can be written

2 \?2
ds® = k™2 (dt + ch(Z)ag’)> —k [er + T2d932] . (5.41)

Only the anti-selfdual parts of the magnetic components of v, F! are non zero and
are given by F! = —%MI@(—) — M@ X @)

e AdS, x S3,

2k
ds® = mdtz—— [dr® + r?dQs?] . (5.42)

The electric fluxes are non-zero and given by F! = 21k: Mdt A dr.

e Near-horizon geometry of the BMPV black hole,

4

A\ 2
ds = <dt+ 2k (%g)) 2K 12 4 2a0,7) (5.43)

We have electric and magnetic fluxes with F! = iM Tdt A dr + M! %Ug) Adr.

We have derived these results off-shell in our consistent truncation, next we shall examine
the equations of motion by making use of the Killing spinor identities. The results for the
system if the first Killing spinor is taken to be in the second orbit are similar, with self-
and anti-self-dual forms interchanged.

5.2 Killing spinor identities and equations of motion

In addition to (and using) the conditions derived from the half-BPS time-like case in (4.35),
we obtain

12

EM) =0, E(A) =0, Clg(v) + 5(D)v> ~0,
11 22
<i5(v) + 5(D)v> - <i5(v) + 8(D)v> — VO&(D),
01
<i€(v) + E(D)v) — _ViE(D), (5.44)

from which we immediately see that it is sufficient to impose the single equation of motion

E(D)=0. (5.45)
This can be written as
1 C21 I 0i I ij ol
0= §(/\/ )+m [M'D + 20" Fy; + v Fy]
o 3 RN
=N -1)+ %IMI 262°V;Vi + 564¢G(’)”G§j s (5.46)
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Thus in the first case, Minkowski space, we obtain the usual very special geometry condition
N=1, (5.47)
while for the Gédel-type solution and AdSy x S® we get respectively

cWeg

=1—c—— 4

N C2 12k2 5 (5 8)
C2

=1—-— 4

N 144k’ (5-49)
where we defined ¢y = cof M1 Finally for the near-horizon BMPYV solution, we obtain
- (&) 1 3 (i)

N = 36 (kﬁ + ]{:26 iy | - (5.50)

Note that these are all constant deformations of the very special geometry condition
N = 1. One may wonder whether this is a coincidence for the invariants we have considered,
or whether this will always be the case. Looking at the Killing spinor identities, tells us that

VED) =0, (5.51)

so that corrections to the equation of motion of D and hence corrections to the very special
geometry condition
N=14+0()+--- (5.52)

must be constant for the maximally supersymmetric time-like solutions. Again the results
if we take the first Killing spinor to be in the second time-like representative are similiar,
up to a reflection.

6 Null supersymmetry and the Ricci scalar squared invariant

In this section we will show that the Ricci scalar squared invariant does not affect the
equations of motion for the null class of supersymmetric solutions, without going into the
details of the geometries. This shows the power of the Killing spinor identities in analysing
higher derivative invariants. As shown in detail in appendix B a representative for the
orbit of Spin(1,4) in the space of spinors with stability subgroup R? has first component

et =(14e). (6.1)

Using the adapted basis (B.47) we find the linear system presented in D.2. Taking z; =1
all others vanishing in this system yields

i 1
E@r =0, E(A)F =0, E(A); =0, L@ HEDW =0,
1 : : 1. o
VTED) =0, 1E@T +EDWT =0, W)Y +EDPY - IEVEE(D) =0,
a=+, _’i g(g)af |other bosons on-shell — O’ g(g)aj|other bosons on-shell — 07
(6.2)
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and we conclude that the equations that remain to be solved are

Notice however that the scalar equation is automatic, which imples that

4 2
R—32 gD2, (6.4)

just as in the time-like case. Note that since this must arise due to the supersymmetry
conditions alone, and not any other equations of motion, that this is an identity for the
null class whether we couple to the Ricci scalar squared invariant or not, i.e. whether e;
vanishes or not. This completes the proof that the Ricci scalar squared invariant does not
contribute to the equations of motion of any supersymmetric solution in this consistent
truncation, and thus to any supersymmetric solution at first order in o’.

7 Maximal supersymmetry in the general case

In this section we will work with the untruncated theory in order to show that the maxi-
mally supersymmetric solutions of the two derivative supergravity theory are those of the
minimal theory, i.e. the all order consistency of the maximally supersymmetric vacua. This
was discussed in [4], but there an on-shell hypermultiplet compensator was used. Due to
the construction of supersymmetric higher derivative invariants using the compensator, it
becomes important to have this multiplet off-shell. Whilst we have shown the Ricci scalar
invariant does not affect the solutions in the truncated case (and so to order o’ in the pres-
ence of the invariants we have considered), other invariants involving the compensating
multiplet may have some effect, as may the invariants we consider here when considering
their contribution to higher order in o’. In fact it is well known that this occurs, since
adding the cosmological constant density changes the theory in such a way that the only
maximally supersymetric sol