2,343 research outputs found

    Space-Enhanced Solar Power for Equatorial Regions

    Get PDF
    This paper examines the concept of solar mirrors in a Earth orbit to provide solar farms with additional solar power during the hours of darkness. The design of the orbit is key for the purposes of the mission: the mirror needs continuous access to the Sun and the solar farm simultaneously. Therefore, orbits with high-eccentricity will be considered to increase the visibility time. Also, since the most convenient locations for solar power farms are about the equator, a suitable orbit should have a low inclination. This issue can be addressed through the concept of anti-heliotropic orbits that exploits mainly solar radiation pressure perturbations to generate highly-eccentric equatorial orbits able to maintain the orientation with respect to the Sun. The considered configuration consists in two space mirrors in a flower constellation rotating with the Earth to deliver a repeat ground track

    Spontaneous heavy cluster emission rates using microscopic potentials

    Get PDF
    The nuclear cluster radioactivities have been studied theoretically in the framework of a microscopic superasymmetric fission model (MSAFM). The nuclear interaction potentials required for binary cold fission processes are calculated by folding in the density distribution functions of the two fragments with a realistic effective interaction. The microscopic nuclear potential thus obtained has been used to calculate the action integral within the WKB approximation. The calculated half lives of the present MSAFM calculations are found to be in good agreement over a wide range of observed experimental data.Comment: 4 pages, 4 figure

    Universal decay law in charged-particle emission and exotic cluster radioactivity

    Full text link
    A linear universal decay formula is presented starting from the microscopic mechanism of the charged-particle emission. It relates the half-lives of monopole radioactive decays with the QQ-values of the outgoing particles as well as the masses and charges of the nuclei involved in the decay. This relation is found to be a generalization of the Geiger-Nuttall law in α\alpha radioactivity and explains well all known cluster decays. Predictions on the most likely emissions of various clusters are presented.Comment: 2 figure

    Direct Observation of Large Amplitude Spin Excitations Localized in a Spin-Transfer Nanocontact

    Full text link
    We report the direct observation of large amplitude spin-excitations localized in a spin-transfer nanocontact using scanning transmission x-ray microscopy. Experiments were conducted using a nanocontact to an ultrathin ferromagnetic multilayer with perpendicular magnetic anisotropy. Element resolved x-ray magnetic circular dichroism images show an abrupt onset of spin excitations at a threshold current that are localized beneath the nanocontact, with average spin precession cone angles of 25{\deg} at the contact center. The results strongly suggest that we have observed a localized magnetic soliton.Comment: 5 pages, 3 figure

    Clustering-based measurement of dependence

    Get PDF
    A measure of the dependence of a multivariate response variable upon a categorical variable is introduced. Its characteristics are explored via simulations by referring to a specific mixture association model. Inferential aspects are investigated using a permutation test approach. We present preliminary results

    Huge Seebeck coefficients in non-aqueous electrolytes

    Full text link
    The Seeebeck coefficients of the non-aqueous electrolytes tetrabutylammonium nitrate, tetraoctylphosphonium bromide and tetradodecylammonium nitrate in 1-octanol, 1-dodecanol and ethylene-glycol are measured in a temperature range from T=30 to T=45 C. The Seebeck coefficient is generally of the order of a few hundreds of microvolts per Kelvin for aqueous solution of inorganic ions. Here we report huge values of 7 mV/K at 0.1M concentration for tetrabutylammonium nitrate in 1-dodecanol. These striking results open the question of unexpectedly large kosmotrope or "structure making" effects of tetraalkylammonium ions on the structure of alcohols.Comment: Submitted to J. Chem. Phy

    Global torques and stochasticity as the drivers of massive black hole pairing in the young Universe

    Full text link
    The forthcoming Laser Interferometer Space Antenna (LISA) will probe the population of coalescing massive black hole (MBH) binaries up to the onset of structure formation. Here we simulate the galactic-scale pairing of 106M\sim10^6 M_\odot MBHs in a typical, non-clumpy main-sequence galaxy embedded in a cosmological environment at z=76z = 7-6. In order to increase our statistical sample, we adopt a strategy that allows us to follow the evolution of six secondary MBHs concomitantly. We find that the magnitude of the dynamical-friction induced torques is significantly smaller than that of the large-scale, stochastic gravitational torques arising from the perturbed and morphologically evolving galactic disc, suggesting that the standard dynamical friction treatment is inadequate for realistic galaxies at high redshift. The dynamical evolution of MBHs is very stochastic, and a variation in the initial orbital phase can lead to a drastically different time-scale for the inspiral. Most remarkably, the development of a galactic bar in the host system either significantly accelerates the inspiral by dragging a secondary MBH into the centre, or ultimately hinders the orbital decay by scattering the MBH in the galaxy outskirts. The latter occurs more rarely, suggesting that galactic bars overall promote MBH inspiral and binary coalescence. The orbital decay time can be an order of magnitude shorter than what would be predicted relying on dynamical friction alone. The stochasticity, and the important role of global torques, have crucial implications for the rates of MBH coalescences in the early Universe: both have to be accounted for when making predictions for the upcoming LISA observatory.Comment: Accepted for publication in MNRAS; 15 pages, 10 Figures, 2 Table

    A rate-independent gradient system in damage coupled with plasticity via structured strains

    Get PDF
    This contribution deals with a class of models combining isotropic damage with plasticity. It has been inspired by a work by Freddi and Royer-Carfagni [FRC10], including the case where the inelastic part of the strain only evolves in regions where the material is damaged. The evolution both of the damage and of the plastic variable is assumed to be rate-independent. Existence of solutions is established in the abstract energetic framework elaborated by Mielke and coworkers (cf., e.g., [Mie05, Mie11b])
    corecore