10 research outputs found

    Outcomes of pregnancies complicated by maternal tuberous sclerosis

    Get PDF
    We present three cases of maternal tuberous sclerosis without major complications in pregnancy and several other patients who delivered with a low risk obstetrician, from this we conclude that maternal tuberous sclerosis may not be as high risk for pregnancy as previously reported in the literature. Tuberous sclerosis (TS) is a genetic disorder that is inherited in an autosomal dominant fashion with variable clinical manifestations including seizures, mental retardation, renal failure and pneumothorax. This case series can aid obstetricians in counseling of patients with this rare disorder

    Outcomes of pregnancies complicated by maternal tuberous sclerosis

    Get PDF
    We present three cases of maternal tuberous sclerosis without major complications in pregnancy and several other patients who delivered with a low risk obstetrician, from this we conclude that maternal tuberous sclerosis may not be as high risk for pregnancy as previously reported in the literature. Tuberous sclerosis (TS) is a genetic disorder that is inherited in an autosomal dominant fashion with variable clinical manifestations including seizures, mental retardation, renal failure and pneumothorax. This case series can aid obstetricians in counseling of patients with this rare disorder

    Restoration of Native Plants Is Reduced by Rodent-Caused Soil Disturbance and Seed Removal

    No full text
    Granivory and soil disturbance are two modes by which burrowing rodents may limit the success of native plant restoration in rangelands. This guild of animals has prolific effects on plant community composition and structure, yet surprisingly little research has quantified the impact of rodents on plant restoration efforts. In this study, we examined the effects of seed removal and soil disturbance by the giant kangaroo rat (Dipodomys ingens) on native plant restoration in a California rangeland. Using experimental exclosures and stratifying restoration plots on and off rodent-disturbed soil, we assessed the individual and combined effects of seed removal and soil disturbance on seedling establishment of four native plant species. Across all species, biotic soil disturbance by kangaroo rats reduced seedling establishment by 19.5% (range = 1-43%), whereas seed removal reduced seedling establishment by only 6.7% (range = 4-12%). Rates of seed removal across species weakly paralleled kangaroo rat dietary preferences. These results indicate the indirect effects of burrowing rodents such as kangaroo rats on native seedling establishment via changes in soil properties may rival or exceed the direct effects of seed removal. © 2015 Society for Range Management. Published by Elsevier Inc. All rights reserved.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information

    BioTIME:a database of biodiversity time series for the Anthropocene

    No full text
    Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene.Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of two, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology andcontextual information about each record.Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1 000 000 000 000 cm2).Time period and grain: BioTIME records span from 1874 to 2016. The minimum temporal grain across all datasets in BioTIME is year.Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton, and terrestrial invertebrates to small and large vertebrates.Software format: .csv and .SQ

    BioTIME:a database of biodiversity time series for the Anthropocene

    No full text
    Abstract Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km² (158 cm²) to 100 km² (1,000,000,000,000 cm²). Time period and grain: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format: .csv and .SQL
    corecore