2,221 research outputs found

    Magnetically Accreting Isolated Old Neutron Stars

    Get PDF
    Previous work on the emission from isolated old neutron stars (IONS) accreting the inter-stellar medium (ISM) focussed on gravitational capture - Bondi accretion. We propose a new class of sources which accrete via magnetic interaction with the ISM. While for the Bondi mechanism, the accretion rate decreases with increasing NS velocity, in magnetic accretors (MAGACs="magics") the accretion rate increases with increasing NS velocity. MAGACs will be produced among high velocity (~> 100 km s-1) high magnetic field (B> 1e14 G) radio pulsars - the ``magnetars'' - after they have evolved first through magnetic dipole spin-down, followed by a ``propeller'' phase (when the object sheds angular momentum on a timescale ~< 1e10 yr). The properties of MAGACS may be summarized thus: dipole magnetic fields of B~>1e14 G; minimum velocities relative to the ISM of >25-100 km s-1, depending on B, well below the median in the observed radio-pulsar population; spin-periods of >days to years; accretion luminosities of 1e28- 1e31 ergs s-1 ; and effective temperatures kT=0.3 - 2.5 keV if they accrete onto the magnetic polar cap. We find no examples of MAGACs among previously observed source classes (anomalous X-ray pulsars, soft-gamma-ray repeaters or known IONS). However, MAGACs may be more prevelant in flux-limited X-ray catalogs than their gravitationally accreting counterparts.Comment: ApJ, accepte

    Laudatores Temporis Acti, or Why Cosmology is Alive and Well - A Reply to Disney

    Full text link
    A recent criticism of cosmological methodology and achievements by Disney (2000) is assessed. Some historical and epistemological fallacies in the said article have been highlighted. It is shown that---both empirically and epistemologically---modern cosmology lies on sounder foundations than it is portrayed. A brief historical account demonstrates that this form of unsatisfaction with cosmology has had a long tradition, and rather meagre results in the course of the XX century.Comment: 11 pages, no figures; a criticism of astro-ph/0009020; Gen. Rel. Grav., accepted for publicatio

    Solution generating theorems for perfect fluid spheres

    Get PDF
    The first static spherically symmetric perfect fluid solution with constant density was found by Schwarzschild in 1918. Generically, perfect fluid spheres are interesting because they are first approximations to any attempt at building a realistic model for a general relativistic star. Over the past 90 years a confusing tangle of specific perfect fluid spheres has been discovered, with most of these examples seemingly independent from each other. To bring some order to this collection, we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres. In addition, we develop new ``solution generating'' theorems for the TOV, whereby any given solution can be ``deformed'' to a new solution. Because these TOV-based theorems work directly in terms of the pressure profile and density profile it is relatively easy to impose regularity conditions at the centre of the fluid sphere.Comment: 8 pages, no figures, to appear in the proceedings of the NEB XII Conference (Recent Developments in Gravity), 29 June - 2 July, 2006, Napflio, Greec

    On cosmological observables in a swiss-cheese universe

    Get PDF
    Photon geodesics are calculated in a swiss-cheese model, where the cheese is made of the usual Friedmann-Robertson-Walker solution and the holes are constructed from a Lemaitre-Tolman-Bondi solution of Einstein's equations. The observables on which we focus are the changes in the redshift, in the angular-diameter--distance relation, in the luminosity-distance--redshift relation, and in the corresponding distance modulus. We find that redshift effects are suppressed when the hole is small because of a compensation effect acting on the scale of half a hole resulting from the special case of spherical symmetry. However, we find interesting effects in the calculation of the angular distance: strong evolution of the inhomogeneities (as in the approach to caustic formation) causes the photon path to deviate from that of the FRW case. Therefore, the inhomogeneities are able to partly mimic the effects of a dark-energy component. Our results also suggest that the nonlinear effects of caustic formation in cold dark matter models may lead to interesting effects on photon trajectories.Comment: 25 pages, 21 figures; replaced to fit the version accepted for publication in Phys. Rev.

    B2 1144+35: A Giant Low Power Radio Galaxy with Superluminal Motion

    Get PDF
    We report on centimeter VLA and VLBI observations of the giant, low power radio galaxy 1144+35. These observations are sensitive to structures on scales from less than 1 parsec to greater than 1 megaparsec. Diffuse steep spectrum lobes on the megaparsec scale are consistent with an age of \sim 108^8 years. On the parsec scale, a complex jet component is seen to move away from the center of activity with an apparent velocity 2.7 h501^{-1}_{50} c. It shows a central spine -- shear layer morphology. A faint parsec scale counterjet is detected and an intrinsic jet velocity of 0.95 c and angle to the line of sight of 25^\circ are derived, consistent with an intrinsically symmetric ejection. The central spine in the parsec scale jet is expected to move at a higher velocity and a Lorentz factor γ\gamma \sim 15 has been estimated near the core.The age of this inner VLBI structure is \sim 300 years. Assuming a constant angle to the line-of-sight, the jet velocity is found to decrease from 0.95 c at 20 mas (32 pc on the plane of the sky) to 0.02 c at 15 arcsec (24 kpc on the plane of the sky). These findings lend credence to the claim that (1) even the jets of low power radio galaxies start out relativistic; and (2) these jets are decelerated to subrelativistic velocities by the time they reach kiloparsec scales.Comment: 21 pages, 16 separated figures. A version with figures and table in the text is available at: ftp://terra.bo.cnr.it/papers/journals - it is a ps gzipped file, named giovannini_apr99.gz (792kb) - ApJ in pres

    Will Jets Identify the Progenitors of Type Ia Supernovae?

    Full text link
    We use the fact that a Type Ia supernova has been serendipitously discovered near the jet of the active galaxy 3C 78 to examine the question of whether jets can enhance accretion onto white dwarfs. One interesting outcome of such a jet-induced accretion process is an enhanced rate of novae in the vicinity of jets. We present results of observations of the jet in M87 which appear to have indeed discovered 11 novae in close proximity to the jet. We show that a confirmation of the relation between jets and novae and Type Ia supernovae can finally identify the elusive progenitors of Type Ia supernovae.Comment: 10 pages, 3 figure

    Gravitational radiation from dynamical black holes

    Full text link
    An effective energy tensor for gravitational radiation is identified for uniformly expanding flows of the Hawking mass-energy. It appears in an energy conservation law expressing the change in mass due to the energy densities of matter and gravitational radiation, with respect to a Killing-like vector encoding a preferred flow of time outside a black hole. In a spin-coefficient formulation, the components of the effective energy tensor can be understood as the energy densities of ingoing and outgoing, transverse and longitudinal gravitational radiation. By anchoring the flow to the trapping horizon of a black hole in a given sequence of spatial hypersurfaces, there is a locally unique flow and a measure of gravitational radiation in the strong-field regime.Comment: 5 revtex4 pages. Additional comment

    Light-cone averages in a swiss-cheese universe

    Full text link
    We analyze a toy swiss-cheese cosmological model to study the averaging problem. In our model, the cheese is the EdS model and the holes are constructed from a LTB solution. We study the propagation of photons in the swiss-cheese model, and find a phenomenological homogeneous model to describe observables. Following a fitting procedure based on light-cone averages, we find that the the expansion scalar is unaffected by the inhomogeneities. This is because of spherical symmetry. However, the light-cone average of the density as a function of redshift is affected by inhomogeneities. The effect arises because, as the universe evolves, a photon spends more and more time in the (large) voids than in the (thin) high-density structures. The phenomenological homogeneous model describing the light-cone average of the density is similar to the concordance model. Although the sole source in the swiss-cheese model is matter, the phenomenological homogeneous model behaves as if it has a dark-energy component. Finally, we study how the equation of state of the phenomenological model depends on the size of the inhomogeneities, and find that the equation-of-state parameters w_0 and w_a follow a power-law dependence with a scaling exponent equal to unity. That is, the equation of state depends linearly on the distance the photon travels through voids. We conclude that within our toy model, the holes must have a present size of about 250 Mpc to be able to mimic the concordance model.Comment: 20 pages, 14 figures; replaced to fit the version accepted for publication in Phys. Rev.
    corecore